Generates jackknife samples.
jack( data, par = FALSE, ncores = NULL, mc = TRUE, lb = FALSE, cl_eval = FALSE, cl_export = FALSE, cl_expr, cl_vars )
data | Vector, matrix, or data frame. Sample data. |
---|---|
par | Logical.
If |
ncores | Integer.
Number of cores to use if |
mc | Logical.
If |
lb | Logical.
If |
cl_eval | Logical.
Execute |
cl_export | Logical.
Execute |
cl_expr | Expression.
Expression passed to |
cl_vars | Character vector.
Names of objects to pass to |
Returns a list of jackknife samples
of length n
,
where n
is the sample size of data
.
Each item in the list,
will have a sample size of
n - 1
.
$$ \mathbf{ x }_i = \left\{ x_1, x_2, x_3, \dots, x_n \right\} $$ for \( i = \left\{ 1, 2, 3, \dots, n \right\} \) the \(i\)th jackknife sample consists of the original sample data with the \(i\)th observation removed.
Wikipedia: Jackknife resampling
Other jackknife functions:
jack_hat()
n <- 5 ################################# # vector ################################# x <- rnorm(n = n) xstar <- jack( data = x ) str(xstar)#> List of 5 #> $ : num [1:4] 0.25532 -2.43726 -0.00557 0.62155 #> $ : num [1:4] -1.40004 -2.43726 -0.00557 0.62155 #> $ : num [1:4] -1.40004 0.25532 -0.00557 0.62155 #> $ : num [1:4] -1.4 0.255 -2.437 0.622 #> $ : num [1:4] -1.40004 0.25532 -2.43726 -0.00557################################# # matrix ################################# x1 <- rnorm(n = n) x2 <- rnorm(n = n) x3 <- rnorm(n = n) X <- cbind(x1, x2, x3) Xstar <- jack( data = X ) str(Xstar)#> List of 5 #> $ : num [1:4, 1:3] -1.822 -0.247 -0.244 -0.283 0.629 ... #> ..- attr(*, "dimnames")=List of 2 #> .. ..$ : NULL #> .. ..$ : chr [1:3] "x1" "x2" "x3" #> $ : num [1:4, 1:3] 1.148 -0.247 -0.244 -0.283 -0.554 ... #> ..- attr(*, "dimnames")=List of 2 #> .. ..$ : NULL #> .. ..$ : chr [1:3] "x1" "x2" "x3" #> $ : num [1:4, 1:3] 1.148 -1.822 -0.244 -0.283 -0.554 ... #> ..- attr(*, "dimnames")=List of 2 #> .. ..$ : NULL #> .. ..$ : chr [1:3] "x1" "x2" "x3" #> $ : num [1:4, 1:3] 1.148 -1.822 -0.247 -0.283 -0.554 ... #> ..- attr(*, "dimnames")=List of 2 #> .. ..$ : NULL #> .. ..$ : chr [1:3] "x1" "x2" "x3" #> $ : num [1:4, 1:3] 1.148 -1.822 -0.247 -0.244 -0.554 ... #> ..- attr(*, "dimnames")=List of 2 #> .. ..$ : NULL #> .. ..$ : chr [1:3] "x1" "x2" "x3"################################# # data frame ################################# X <- as.data.frame(X) Xstar <- jack( data = X ) str(Xstar)#> List of 5 #> $ :'data.frame': 4 obs. of 3 variables: #> ..$ x1: num [1:4] -1.822 -0.247 -0.244 -0.283 #> ..$ x2: num [1:4] 0.629 2.065 -1.631 0.512 #> ..$ x3: num [1:4] -0.522 -0.0526 0.543 -0.9141 #> $ :'data.frame': 4 obs. of 3 variables: #> ..$ x1: num [1:4] 1.148 -0.247 -0.244 -0.283 #> ..$ x2: num [1:4] -0.554 2.065 -1.631 0.512 #> ..$ x3: num [1:4] -1.863 -0.0526 0.543 -0.9141 #> $ :'data.frame': 4 obs. of 3 variables: #> ..$ x1: num [1:4] 1.148 -1.822 -0.244 -0.283 #> ..$ x2: num [1:4] -0.554 0.629 -1.631 0.512 #> ..$ x3: num [1:4] -1.863 -0.522 0.543 -0.914 #> $ :'data.frame': 4 obs. of 3 variables: #> ..$ x1: num [1:4] 1.148 -1.822 -0.247 -0.283 #> ..$ x2: num [1:4] -0.554 0.629 2.065 0.512 #> ..$ x3: num [1:4] -1.863 -0.522 -0.0526 -0.9141 #> $ :'data.frame': 4 obs. of 3 variables: #> ..$ x1: num [1:4] 1.148 -1.822 -0.247 -0.244 #> ..$ x2: num [1:4] -0.554 0.629 2.065 -1.631 #> ..$ x3: num [1:4] -1.863 -0.522 -0.0526 0.543