library(jeksterslabRboot)

Random Variable

Let \(X\) be a random variable from a normal distribution with \(\mu = 100\) and \(\sigma^2 = 225\).

\[\begin{equation} X \sim \mathcal{N} \left( \mu = 100, \sigma^2 = 225 \right) (\#eq:dist-norm-X-r) \end{equation}\]

This data generating function is referred to as \(F\).

Population Parameters
Variable Description Notation Value
mu Population mean. \(\mu\) 100
sigma2 Population variance. \(\sigma^2\) 225
sigma Population standard deviation. \(\sigma\) 15

For a sample size of \(n = 1000\), if the parameter of interest \(\theta\) is the mean \(\mu\), using the know parameters, the variance of the sampling distribution of the mean is

\[\begin{equation} \mathrm{Var} \left( \hat{\mu} \right) = \frac{ \sigma^2 } { n } = 0.225 \end{equation}\]

and the standard error of the mean is

\[\begin{equation} \mathrm{se} \left( \hat{\mu} \right) = \frac{ \sigma } { \sqrt{n} } = 0.4743416 \end{equation}\]

Sampling Distribution of \(\hat{\theta}\) with Known Parameters
Variable Description Notation Value
n Sample size. \(n\) 1000.0000000
theta Population mean. \(\theta = \mu\) 100.0000000
var_thetahat Variance of the sampling distribution of the mean. \(\mathrm{Var} \left( \hat{\theta} \right) = \frac{ \sigma^2 }{n}\) 0.2250000
se_thetahat Standard error of the mean. \(\mathrm{se} \left( \hat{\theta} \right) = \frac{ \sigma }{\sqrt{n}}\) 0.4743416

Sample Data

Let \(\mathbf{x}\) be a vector of length \(n = 1000\) of realizations of the random variable \(X\). Each observation \(i\) is independently sampled from the normal distribution with \(\mu = 100\) and \(\sigma^2 = 225\).

\[\begin{equation} x = X \left( \omega \right) (\#eq:dist-random-variable-1) \end{equation}\]

\[\begin{equation} \mathbf{x} = \begin{bmatrix} x_1 = X \left( \omega_1 \right) \\ x_2 = X \left( \omega_2 \right) \\ x_3 = X \left( \omega_3 \right) \\ x_i = X \left( \omega_i \right) \\ \vdots \\ x_n = X \left( \omega_n \right) \end{bmatrix}, \\ i = \left\{ 1, 2, 3, \dots, n \right\} (\#eq:dist-random-variable-2) \end{equation}\]

This is accommplished in R using the rnorm() function with the following arguments n = 1000, mean = 100, and sd = 15. rnorm() returns a vector of length n.

x <- rnorm(
  n = n,
  mean = mu,
  sd = sigma
)
str(x)
#>  num [1:1000] 120.6 91.5 105.4 109.5 106.1 ...

We can calculate sample statistics using the sample data \(\mathbf{x}\). Note that a hat (^) indicates that the quantity is an estimate of the parameter using sample data.

Sample Statistics (Parameter Estimates)
Variable Description Notation Value
n Sample size. \(n\) 1000.0000000
thetahat Sample mean. \(\hat{\theta} = \hat{\mu} = \frac{1}{n} \sum_{i = 1}^{n} x_i\) 99.6126336
sigma2hat Sample variance. \(\hat{\sigma}^2 = \frac{1}{n - 1} \sum_{i = 1}^{n} \left( x_i - \hat{\mu} \right)^2\) 226.1359868
sigmahat Sample standard deviation. \(\hat{\sigma} = \sqrt{\frac{1}{n - 1} \sum_{i = 1}^{n} \left( x_i - \hat{\mu} \right)^2}\) 15.0378186
varhat Estimate of the variance of the sampling distribution of the mean. \(\widehat{\mathrm{Var}} \left( \hat{\theta} \right) = \frac{ \hat{\sigma}^2 }{n}\) 0.2261360
sehat Estimate of the standard error of the mean. \(\widehat{\mathrm{se}} \left( \hat{\theta} \right) = \frac{ \hat{\sigma} }{\sqrt{n}}\) 0.4755376

Parametric Bootstrapping

\(\mathbf{x}\) which is a vector of realizations of the random variable \(X\) is used in bootstrapping. This sample data is referred to as the empirical distribution \(\hat{F}\).

In parametric bootstrapping we make a parametric assumption about the distribution of \(\hat{F}\), that is, \(\hat{F} = F_{\hat{\theta}}\) . In the current example, we assume a normal distribution \(\mathcal{N} \left( \mu, \sigma^2 \right)\). Data is generated \(B\) number of times (1000 in the current example) from the empirical distribution \(\hat{F}_{\mathcal{N} \left( \hat{\mu}, \hat{\sigma^2} \right)}\) using parameter estimates (\(\hat{\mu} = 99.6126336\) and \(\hat{\sigma}^2 = 226.1359868\)).

Bootstrap Samples

\(\mathbf{x}^{*}\) is a set of \(B\) bootstrap samples.

\[\begin{equation} \mathbf{x}^{*} = \begin{bmatrix} \mathbf{x}^{*1} = \left\{ x^{*1}_{1}, x^{*1}_{2}, x^{*1}_{3}, x^{*1}_{i}, \dots, x^{*1}_{n} \right\} \\ \mathbf{x}^{*2} = \left\{ x^{*2}_{1}, x^{*2}_{2}, x^{*2}_{3}, x^{*2}_{i}, \dots, x^{*2}_{n} \right\} \\ \mathbf{x}^{*3} = \left\{ x^{*3}_{1}, x^{*3}_{2}, x^{*3}_{3}, x^{*3}_{i}, \dots, x^{*3}_{n} \right\} \\ \mathbf{x}^{*b} = \left\{ x^{*b}_{1}, x^{*b}_{2}, x^{*b}_{3}, x^{*b}_{i}, \dots, x^{*b}_{n} \right\} \\ \vdots \\ \mathbf{x}^{*B} = \left\{ x^{*B}_{1}, x^{*B}_{2}, x^{*B}_{3}, x^{*B}_{i}, \dots, x^{*B}_{n} \right\} \end{bmatrix}, \\ b = \left\{ 1, 2, 3, \dots, B \right\}, \\ i = \left\{ 1, 2, 3, \dots, n \right\} \end{equation}\]

The function pbuniv() from the jeksterslabRboot package can be used to generate B parametric bootstrap samples from a univariate probability distribution such as the current example. The argument rFUN takes in a function to use in the random data generation process. In the current example, assuming a univariate normal distribution, we use rnorm. The argument n is the sample size of the original sample data x. B is the number of bootstrap samples B = 1000 in our case. The ... arguments is a way to pass arguments to rFUN. In the current example, we pass mean = 99.6126336 and sd = 15.0378186 to rnorm. The pbuniv() function returns a list of length B bootstrap samples. \(x^{*}\) is saved as xstar.

xstar <- pbuniv(
  n = n,
  rFUN = rnorm,
  B = B,
  mean = thetahat,
  sd = sigmahat
)
str(xstar, list.len = 6)
#> List of 1000
#>  $ : num [1:1000] 134.6 107.5 114.2 105.3 84.6 ...
#>  $ : num [1:1000] 103.4 95.4 73.7 69.4 80.2 ...
#>  $ : num [1:1000] 89.3 87.7 93.5 82.3 116.4 ...
#>  $ : num [1:1000] 97.5 87.4 94.7 105.3 69.6 ...
#>  $ : num [1:1000] 100.7 114.2 104.3 97.5 94.7 ...
#>  $ : num [1:1000] 102.2 80.5 86.6 109 98 ...
#>   [list output truncated]

Bootstrap Sampling Distribution

The parameter is estimated for each of the \(B\) bootstrap samples. For example, if we are interested in making inferences about the mean, we calculate the sample statistic (\(\mathrm{s}\)), that is, the sample mean, for each element of \(\mathbf{x}^{*}\). The \(B\) estimated parameters form the bootstrap sampling distribution \(\boldsymbol{\hat{\theta}^{*}}\).

\[\begin{equation} \boldsymbol{\hat{\theta}^{*}} = \begin{bmatrix} \hat{\theta}^{*} \left( 1 \right) = \mathrm{s} \left( \mathbf{x}^{*1} \right) \\ \hat{\theta}^{*} \left( 2 \right) = \mathrm{s} \left( \mathbf{x}^{*2} \right) \\ \hat{\theta}^{*} \left( 3 \right) = \mathrm{s} \left( \mathbf{x}^{*3} \right) \\ \hat{\theta}^{*} \left( b \right) = \mathrm{s} \left( \mathbf{x}^{*b} \right) \\ \vdots \\ \hat{\theta}^{*} \left( B \right) = \mathrm{s} \left( \mathbf{x}^{*B} \right) \end{bmatrix}, \\ b = \left\{ 1, 2, 3, \dots, B \right\} \end{equation}\]

sapply is a useful tool in R to apply a function to each element of a list. In our case, we apply the function mean() to each element of the list xstar. sapply simplifies the output when possible. In our case, sapply returns a vector, thetahatstar. The *apply functions as well as their parallel counterparts (e.g., parSapply) can be used to simplify repetitive tasks.

thetahatstar <- sapply(
  X = xstar,
  FUN = mean
)
str(thetahatstar)
#>  num [1:1000] 99.5 99.6 99.3 99.4 100 ...

Estimated Bootstrap Standard Error

The estimated bootstrap standard error is given by

\[\begin{equation} \widehat{\mathrm{se}}_{\mathrm{B}} \left( \hat{\theta} \right) = \sqrt{ \frac{1}{B - 1} \sum_{b = 1}^{B} \left[ \hat{\theta}^{*} \left( b \right) - \hat{\theta}^{*} \left( \cdot \right) \right]^2 } = 0.4729983 \end{equation}\]

where

\[\begin{equation} \hat{\theta}^{*} \left( \cdot \right) = \frac{1}{B} \sum_{b = 1}^{B} \hat{\theta}^{*} \left( b \right) = 99.6218987 . \end{equation}\]

Note that \(\widehat{\mathrm{se}}_{\mathrm{B}} \left( \hat{\theta} \right)\) is the standard deviation of \(\boldsymbol{\hat{\theta}^{*}}\) and \(\hat{\theta}^{*} \left( \cdot \right)\) is the mean of \(\boldsymbol{\hat{\theta}^{*}}\) .

Parametric Bootstrapping Results
Variable Description Notation Value
B Number of bootstrap samples. \(B\) 1000.0000000
mean_thetahatstar Mean of \(B\) sample means. \(\hat{\theta}^{*} \left( \cdot \right) = \frac{1}{B} \sum_{b = 1}^{B} \hat{\theta}^{*} \left( b \right)\) 99.6218987
var_thetahatstar Variance of \(B\) sample means. \(\widehat{\mathrm{Var}}_{\mathrm{B}} \left( \hat{\theta} \right) = \frac{1}{B - 1} \sum_{b = 1}^{B} \left[ \hat{\theta}^{*} \left( b \right) - \hat{\theta}^{*} \left( \cdot \right) \right]^2\) 0.2237274
sd_thetahatstar Standard deviation of \(B\) sample means. \(\widehat{\mathrm{se}}_{\mathrm{B}} \left( \hat{\theta} \right) = \sqrt{ \frac{1}{B - 1} \sum_{b = 1}^{B} \left[ \hat{\theta}^{*} \left( b \right) - \hat{\theta}^{*} \left( \cdot \right) \right]^2 }\) 0.4729983

Confidence Intervals

Confidence intervals can be constructed around \(\hat{\theta}\) . The functions pc(), bc(), and bca() from the jeksterslabRboot package can be used to construct confidence intervals using the default alphas of 0.001, 0.01, and 0.05. Wald confidence intervals (wald()) are added for comparison. The confidence intervals can also be evaluated. Since we know the population parameter theta \(\left(\theta = \mu = 100 \right)\), we can check if our confidence intervals contain the population parameter.

See documentation for wald(), pc(), bc(), and bca() from the jeksterslabRboot package on how confidence intervals are constructed.

See documentation for zero_hit(), theta_hit(), len(), and shape() from the jeksterslabRboot package on how confidence intervals are evaluated.

wald_out <- wald(
  thetahat = thetahat,
  sehat = sehat,
  eval = TRUE,
  theta = theta
)
wald_out_t <- wald(
  thetahat = thetahat,
  sehat = sehat,
  dist = "t",
  df = df,
  eval = TRUE,
  theta = theta
)
pc_out <- pc(
  thetahatstar = thetahatstar,
  thetahat = thetahat,
  wald = TRUE,
  eval = TRUE,
  theta = theta
)
bc_out <- bc(
  thetahatstar = thetahatstar,
  thetahat = thetahat,
  wald = TRUE,
  eval = TRUE,
  theta = theta
)
bca_out <- bca(
  thetahatstar = thetahatstar,
  thetahat = thetahat,
  data = x,
  fitFUN = mean,
  wald = TRUE,
  eval = TRUE,
  theta = theta
)
Confidence Intervals
statistic p se ci_0.05 ci_0.5 ci_2.5 ci_97.5 ci_99.5 ci_99.95 zero_hit_0.001 zero_hit_0.01 zero_hit_0.05 theta_hit_0.001 theta_hit_0.01 theta_hit_0.05 length_0.001 length_0.01 length_0.05 shape_0.001 shape_0.01 shape_0.05
wald 209.4737 0 0.4755376 98.04786 98.38773 98.68060 100.5447 100.8375 101.1774 0 0 0 1 1 1 3.129538 2.449807 1.864073 1.000000 1.0000000 1.0000000
wald_t 209.4737 0 0.4755376 98.04322 98.38539 98.67947 100.5458 100.8399 101.1820 0 0 0 1 1 1 3.138826 2.454496 1.866334 1.000000 1.0000000 1.0000000
pc 210.5983 0 0.4729983 98.24189 98.33583 98.60665 100.5606 100.7887 101.1389 0 0 0 1 1 1 2.896981 2.452876 1.953946 1.113443 0.9211137 0.9423178
bc 210.5983 0 0.4729983 98.24050 98.31343 98.57300 100.5058 100.7451 101.0508 0 0 0 1 1 1 2.810305 2.431658 1.932769 1.048135 0.8716474 0.8590905
bca 210.5983 0 0.4729983 98.24050 98.31336 98.57299 100.5057 100.7451 101.0506 0 0 0 1 1 1 2.810110 2.431709 1.932719 1.047990 0.8715967 0.8590173

Notes

The estimated bootstrap standard error is similar to results from the closed form solution. The estimated bootstrap confidence intervals are also close to the Wald confidence intervals. While a closed form solution for the standard error is available in this simple example, bootstrap standard errors and confidence intervals can be used in situations when standard errors are not easy to calculate.

References