Generates B
number of parametric bootstrap
samples from estimated parameters of original univariate sample data
.
data
is referred to as the empirical distribution
$$
\hat{
F
}_{
\mathcal{
Distribution
}
}
$$.
The default distribution is
$$
\mathcal{
N
}
\left(
\hat{
\mu
},
\hat{
\sigma
}^2
\right)
%(\#eq:boot-pb-norm)
$$.
The univariate distribution and parameters used in the
data generating process can be specified using rFUN
and ...
.
pbuniv( n, rFUN = rnorm, ..., B = 2000L, par = FALSE, ncores = NULL, mc = TRUE, lb = FALSE, cl_eval = FALSE, cl_export = FALSE, cl_expr, cl_vars, rbind = NULL )
n | Integer. Sample size. |
---|---|
rFUN | Function. Data generating function to generate univariate data. |
... | Arguments to pass to |
B | Integer. Number of bootstrap samples. |
par | Logical.
If |
ncores | Integer.
Number of cores to use if |
mc | Logical.
If |
lb | Logical.
If |
cl_eval | Logical.
Execute |
cl_export | Logical.
Execute |
cl_expr | Expression.
Expression passed to |
cl_vars | Character vector.
Names of objects to pass to |
rbind | NULL or logical.
If |
Returns a list of length B
of parametric bootstrap samples.
For more details and examples see the following vignettes:
Efron, B., & Tibshirani, R. J. (1993). An introduction to the bootstrap. New York, N.Y: Chapman & Hall.
Wikipedia: Bootstrapping (statistics)
n <- 5 B <- 5 # normal distribution--------------------------------------------------------- mu <- 100 sigma2 <- 225 sigma <- sqrt(sigma2) x <- rnorm( n = n, mean = mu, sd = sigma ) muhatthetahat <- mean(x) Sigmahatthetahat <- sd(x) xstar <- pbuniv( n = n, rFUN = rnorm, B = B, mean = muhatthetahat, sd = Sigmahatthetahat ) str(xstar)#> List of 5 #> $ : num [1:5] 91.4 95.4 100.8 94.6 104.4 #> $ : num [1:5] 105 95.6 98.3 94.8 94.6 #> $ : num [1:5] 86.4 92.5 102.1 110.4 109.5 #> $ : num [1:5] 94.5 95.1 105.7 95.6 99.6 #> $ : num [1:5] 99.1 98.1 107.3 106.7 98.3# binomial distribution------------------------------------------------------- n_trials <- 1 p <- 0.50 x <- rbinom( n = n, size = n_trials, prob = p ) phat <- mean(x) / n_trials xstar <- pbuniv( n = n, rFUN = rbinom, B = B, size = n_trials, prob = phat ) str(xstar)#> List of 5 #> $ : int [1:5] 0 0 0 1 0 #> $ : int [1:5] 1 0 1 0 1 #> $ : int [1:5] 0 0 1 1 0 #> $ : int [1:5] 0 0 0 1 1 #> $ : int [1:5] 0 1 0 0 0