Model-Implied Mean Vector from the simple mediation model.
mutheta(mux, deltam, deltay, taudot, beta, alpha)
| mux | Numeric.
Mean of |
|---|---|
| deltam | Numeric.
Intercept of |
| deltay | Numeric.
Intercept of |
| taudot | Numeric.
Slope of path from |
| beta | Numeric.
Slope of path from |
| alpha | Numeric.
Slope of path from |
The simple mediation model is given by $$ y_i = \delta_y + \dot{\tau} x_i + \beta m_i + \varepsilon_{y_{i}} $$
$$ m_i = \delta_m + \alpha x_i + \varepsilon_{m_{i}} $$
The parameters for the mean structure are $$ \boldsymbol{\theta}_{\text{mean structure}} = \left\{ \mu_x, \delta_m, \delta_y \right\} . $$
The parameters for the covariance structure are $$ \boldsymbol{\theta}_{\text{covariance structure}} = \left\{ \dot{\tau}, \beta, \alpha, \sigma_{x}^{2}, \sigma_{\varepsilon_{m}}^{2}, \sigma_{\varepsilon_{y}}^{2} \right\} . $$
Other reticular action model functions:
A.std(),
A(),
Mfrommu(),
M(),
S.std(),
Sfromsigma2(),
Sigmatheta.std(),
Sigmathetafromsigma2(),
Sigmatheta(),
S()
Ivan Jacob Agaloos Pesigan
mutheta( mux = 70.18000, deltam = 26.82246, deltay = 29.91071, taudot = 0.207648, beta = 0.451039, alpha = 0.338593 )#> x m y #> 70.18000 50.58492 67.29922#> temp thirst water #> 70.18 3.06 3.24