Model-implied variance-covariance matrix from the simple mediation model.
Sigmatheta(taudot, beta, alpha, sigma2x, sigma2epsilonm, sigma2epsilony)
| taudot | Numeric.
Slope of path from |
|---|---|
| beta | Numeric.
Slope of path from |
| alpha | Numeric.
Slope of path from |
| sigma2x | Numeric.
Variance of |
| sigma2epsilonm | Numeric. Error variance of \(\varepsilon_{m_{i}}\) \(\left( \sigma_{\varepsilon_m}^{2} \right)\). |
| sigma2epsilony | Numeric. Error variance of \(\varepsilon_{y_{i}}\) \(\left( \sigma_{\varepsilon_y}^{2} \right)\). |
The simple mediation model is given by $$ y_i = \delta_y + \dot{\tau} x_i + \beta m_i + \varepsilon_{y_{i}} $$
$$ m_i = \delta_m + \alpha x_i + \varepsilon_{m_{i}} $$
The parameters for the mean structure are $$ \boldsymbol{\theta}_{\text{mean structure}} = \left\{ \mu_x, \delta_m, \delta_y \right\} . $$
The parameters for the covariance structure are $$ \boldsymbol{\theta}_{\text{covariance structure}} = \left\{ \dot{\tau}, \beta, \alpha, \sigma_{x}^{2}, \sigma_{\varepsilon_{m}}^{2}, \sigma_{\varepsilon_{y}}^{2} \right\} . $$
Other reticular action model functions:
A.std(),
A(),
Mfrommu(),
M(),
S.std(),
Sfromsigma2(),
Sigmatheta.std(),
Sigmathetafromsigma2(),
S(),
mutheta()
Ivan Jacob Agaloos Pesigan
Sigmatheta( taudot = 0.207648, beta = 0.451039, alpha = 0.338593, sigma2x = 1.293469, sigma2epsilonm = 0.9296691, sigma2epsilony = 0.9310597 )#> x m y #> x 1.2934690 0.4379595 0.4661231 #> m 0.4379595 1.0779591 0.5771430 #> y 0.4661231 0.5771430 1.2881632#> temp thirst water #> temp 1.2934694 0.4379592 0.4661224 #> thirst 0.4379592 1.0779592 0.5771429 #> water 0.4661224 0.5771429 1.2881633