Matrix of variance of x and error variances from the simple mediation model
from variances of x, m, and y and the A matrix.
Sfromsigma2(taudot, beta, alpha, sigma2x, sigma2m, sigma2y)
| taudot | Numeric.
Slope of path from |
|---|---|
| beta | Numeric.
Slope of path from |
| alpha | Numeric.
Slope of path from |
| sigma2x | Numeric.
Variance of |
| sigma2m | Numeric.
Variance of |
| sigma2y | Numeric.
Variance of |
The simple mediation model is given by $$ y_i = \delta_y + \dot{\tau} x_i + \beta m_i + \varepsilon_{y_{i}} $$
$$ m_i = \delta_m + \alpha x_i + \varepsilon_{m_{i}} $$
The parameters for the mean structure are $$ \boldsymbol{\theta}_{\text{mean structure}} = \left\{ \mu_x, \delta_m, \delta_y \right\} . $$
The parameters for the covariance structure are $$ \boldsymbol{\theta}_{\text{covariance structure}} = \left\{ \dot{\tau}, \beta, \alpha, \sigma_{x}^{2}, \sigma_{\varepsilon_{m}}^{2}, \sigma_{\varepsilon_{y}}^{2} \right\} . $$
Other reticular action model functions:
A.std(),
A(),
Mfrommu(),
M(),
S.std(),
Sigmatheta.std(),
Sigmathetafromsigma2(),
Sigmatheta(),
S(),
mutheta()
Ivan Jacob Agaloos Pesigan
Sfromsigma2( taudot = 0.207648, beta = 0.451039, alpha = 0.338593, sigma2x = 1.2934694, sigma2m = 1.0779592, sigma2y = 1.2881633 )#> x m y #> x 1.293469 0.0000000 0.0000000 #> m 0.000000 0.9296691 0.0000000 #> y 0.000000 0.0000000 0.9310597