Matrix of variance of x and error variances from the simple mediation model.
S(sigma2x, sigma2epsilonm, sigma2epsilony)
| sigma2x | Numeric.
Variance of |
|---|---|
| sigma2epsilonm | Numeric. Error variance of \(\varepsilon_{m_{i}}\) \(\left( \sigma_{\varepsilon_m}^{2} \right)\). |
| sigma2epsilony | Numeric. Error variance of \(\varepsilon_{y_{i}}\) \(\left( \sigma_{\varepsilon_y}^{2} \right)\). |
The simple mediation model is given by $$ y_i = \delta_y + \dot{\tau} x_i + \beta m_i + \varepsilon_{y_{i}} $$
$$ m_i = \delta_m + \alpha x_i + \varepsilon_{m_{i}} $$
The parameters for the mean structure are $$ \boldsymbol{\theta}_{\text{mean structure}} = \left\{ \mu_x, \delta_m, \delta_y \right\} . $$
The parameters for the covariance structure are $$ \boldsymbol{\theta}_{\text{covariance structure}} = \left\{ \dot{\tau}, \beta, \alpha, \sigma_{x}^{2}, \sigma_{\varepsilon_{m}}^{2}, \sigma_{\varepsilon_{y}}^{2} \right\} . $$
Other reticular action model functions:
A.std(),
A(),
Mfrommu(),
M(),
S.std(),
Sfromsigma2(),
Sigmatheta.std(),
Sigmathetafromsigma2(),
Sigmatheta(),
mutheta()
Ivan Jacob Agaloos Pesigan
S( sigma2x = 1.293469, sigma2epsilonm = 0.9296691, sigma2epsilony = 0.9310597 )#> x m y #> x 1.293469 0.0000000 0.0000000 #> m 0.000000 0.9296691 0.0000000 #> y 0.000000 0.0000000 0.9310597