Derives the \(\mathbf{S}\) matrix using the Reticular Action Model (RAM) notation from variable variances \(\sigma^2\). The off-diagonal elements of the \(\mathbf{S}\) matrix are assumed to be zeroes.
ramsigma2(sigma2, A, start = TRUE)
sigma2 | Numeric vector. Vector of variances \(\sigma^2\). |
---|---|
A |
|
start | Logical.
If |
Returns the \(\mathbf{S}\) matrix.
The \(\mathbf{S}\) matrix is derived using the \(\mathbf{A}\) matrix
and sigma squared \(\left( \sigma^2 \right)\) vector (variances).
Note that the first or last (see start
argument) element
in the A
and S
matrices should be an exogenous variable.
McArdle, J. J. (2013). The development of the RAM rules for latent variable structural equation modeling. In A. Maydeu-Olivares & J. J. McArdle (Eds.), Contemporary Psychometrics: A festschrift for Roderick P. McDonald (pp. 225--273). Lawrence Erlbaum Associates.
McArdle, J. J., & McDonald, R. P. (1984). Some algebraic properties of the Reticular Action Model for moment structures. British Journal of Mathematical and Statistical Psychology, 37 (2), 234--251.
Other SEM notation functions:
ramM()
,
ramSigmatheta()
,
rammutheta()