Derives the mean structure vector \(\mathbf{M}\) using the Reticular Action Model (RAM) notation.

ramM(mu, A, filter)

Arguments

mu

k x 1 numeric vector \(\boldsymbol{\mu} \left( \boldsymbol{\theta} \right)_{k \times 1}\) . Model-implied meam vector.

A

m x m numeric matrix \(\mathbf{A}_{m \times m}\). Asymmetric paths (single-headed arrows), such as regression coefficients and factor loadings.

filter

k x m numeric matrix \(\mathbf{F}_{k \times m}\). Filter matrix used to select variables.

Value

Returns the mean structure vector \(\mathbf{M}\) derived from the \(\mathbf{A}\), \(\mathbf{F}\), \( \mathbf{I}\), matrices and \( \boldsymbol{\mu} \left( \boldsymbol{\theta} \right)\) vector.

Details

The mean structure vector \(\mathbf{M}\) as a function of Reticular Action Model (RAM) matrices is given by

$$ \mathbf{M} = \left( \mathbf{I} - \mathbf{A} \right)^{-1} \mathbf{F}^{T} \boldsymbol{\mu} \left( \boldsymbol{\theta} \right) $$

where

  • \(\mathbf{A}_{m \times m}\) represents asymmetric paths (single-headed arrows), such as regression coefficients and factor loadings,

  • \(\mathbf{I}_{m \times m}\) represents an identity matrix,

  • \(\mathbf{F}_{k \times m}\) represents the filter matrix used to select the observed variables,

  • \(\boldsymbol{\mu} \left( \boldsymbol{\theta} \right)\) is the \(k \times 1\) model-implied mean vector

  • \(k\) number of observed variables,

  • \(q\) number of latent variables, and

  • \(m\) number of observed and latent variables, that is \(k + q\) .

References

McArdle, J. J. (2013). The development of the RAM rules for latent variable structural equation modeling. In A. Maydeu-Olivares & J. J. McArdle (Eds.), Contemporary Psychometrics: A festschrift for Roderick P. McDonald (pp. 225--273). Lawrence Erlbaum Associates.

McArdle, J. J., & McDonald, R. P. (1984). Some algebraic properties of the Reticular Action Model for moment structures. British Journal of Mathematical and Statistical Psychology, 37 (2), 234--251.

See also

Other SEM notation functions: ramSigmatheta(), rammutheta(), ramsigma2()