R/ram.R
ramSigmatheta.Rd
Derives the model-implied variance-covariance matrix \(\boldsymbol{\Sigma} \left( \boldsymbol{\theta} \right)\) using the Reticular Action Model (RAM) notation.
ramSigmatheta(A, S, filter)
A |
|
---|---|
S |
|
filter |
|
Returns the model-implied variance-covariance matrix
\(\boldsymbol{\Sigma} \left( \boldsymbol{\theta} \right)\)
derived from the A
, S
, and filter
matrices.
The model-implied variance-covariance matrix \(\boldsymbol{\Sigma} \left( \boldsymbol{\theta} \right)\) as a function of Reticular Action Model (RAM) matrices is given by
$$ \boldsymbol{\Sigma} \left( \boldsymbol{\theta} \right) = \mathbf{F} \left( \mathbf{I} - \mathbf{A} \right)^{-1} \mathbf{S} \left[ \left( \mathbf{I} - \mathbf{A} \right)^{-1} \right]^{T} \mathbf{F}^{T} $$
where
\(\mathbf{A}_{m \times m}\) represents asymmetric paths (single-headed arrows), such as regression coefficients and factor loadings,
\(\mathbf{S}_{m \times m}\) represents symmetric paths (double-headed arrows), such as variances and covariances,
\(\mathbf{F}_{k \times m}\) represents the filter matrix used to select the observed variables,
\(\mathbf{I}_{m \times m}\) represents an identity matrix,
\(k\) number of observed variables,
\(q\) number of latent variables, and
\(m\) number of observed and latent variables, that is \(k + q\) .
McArdle, J. J. (2013). The development of the RAM rules for latent variable structural equation modeling. In A. Maydeu-Olivares & J. J. McArdle (Eds.), Contemporary Psychometrics: A festschrift for Roderick P. McDonald (pp. 225--273). Lawrence Erlbaum Associates.
McArdle, J. J., & McDonald, R. P. (1984). Some algebraic properties of the Reticular Action Model for moment structures. British Journal of Mathematical and Statistical Psychology, 37 (2), 234--251.
Other SEM notation functions:
ramM()
,
rammutheta()
,
ramsigma2()