R/beta.R
slopesprime.Rd
Derives the standardized slopes \(\boldsymbol{\beta}_{2, \cdots, k}^{\prime}\) of a linear regression model as a function of correlations.
slopesprime(X, y)
X |
|
---|---|
y | Numeric vector of length |
Returns the standardized slopes \(\boldsymbol{\beta}_{2, \cdots, k}^{\prime}\) of a linear regression model derived from the correlation matrix.
The linear regression standardized slopes are calculated using $$ \boldsymbol{\beta}_{2, \cdots, k}^{\prime} = \mathbf{R}_{\mathbf{X}}^{T} \mathbf{r}_{\mathbf{y}, \mathbf{X}} $$
where
\(\mathbf{R}_{\mathbf{X}}\) is the \(p \times p\) correlation matrix of the regressor variables \(X_2, X_3, \cdots, X_k\) and
\(\mathbf{r}_{\mathbf{y}, \mathbf{X}}\) is the \(p \times 1\) column vector of the correlations between the regressand \(y\) variable and regressor variables \(X_2, X_3, \cdots, X_k\)
Other parameter functions:
.intercept()
,
.slopesprime()
,
.slopes()
,
intercept()
,
sigma2epsilon()
,
slopes()
Ivan Jacob Agaloos Pesigan