Derives the slopes \(\boldsymbol{\beta}_{2, \cdots, k}\) of a linear regression model (\(\boldsymbol{\beta}\) minus the intercept) as a function of covariances.
slopes(X, y)
X |
|
---|---|
y | Numeric vector of length |
Returns the slopes \(\boldsymbol{\beta}_{2, \cdots, k}\) of a linear regression model derived from the variance-covariance matrix.
The linear regression slopes are calculated using $$ \boldsymbol{\beta}_{2, \cdots, k} = \boldsymbol{\Sigma}_{\mathbf{X}}^{T} \boldsymbol{\sigma}_{\mathbf{y}, \mathbf{X}} $$
where
\(\boldsymbol{\Sigma}_{\mathbf{X}}\) is the \(p \times p\) covariance matrix of the regressor variables \(X_2, X_3, \cdots, X_k\) and
\(\boldsymbol{\sigma}_{\mathbf{y}, \mathbf{X}}\) is the \(p \times 1\) column vector of the covariances between the regressand \(y\) variable and regressor variables \(X_2, X_3, \cdots, X_k\)
Other parameter functions:
.intercept()
,
.slopesprime()
,
.slopes()
,
intercept()
,
sigma2epsilon()
,
slopesprime()
Ivan Jacob Agaloos Pesigan