Derives the intercept \(\beta_1\) of a linear regression model from the \(p \times 1\) regression slopes \(\left( \boldsymbol{\beta}_{2, \cdots, k} \right)\), the mean of the regressand \(\left( \mu_y \right)\), and the \(p \times 1\) means of regressors \({X}_{2}, {X}_{3}, \dots, {X}_{k}\) \(\left( \boldsymbol{\mu}_{\mathbf{X}} \right)\) .
intercept(X, y)
X |
|
---|---|
y | Numeric vector of length |
Returns the intercept \(\beta_1\) of a linear regression model derived from the means and the slopes \(\left( \boldsymbol{\beta}_{2, \cdots, k} \right)\) .
The intercept \(\beta_1\) is given by $$ \beta_1 = \mu_y - \boldsymbol{\mu}_{\mathbf{X}} \boldsymbol{\beta}_{2, \cdots, k}^{T} . $$
Other parameter functions:
.intercept()
,
.slopesprime()
,
.slopes()
,
sigma2epsilon()
,
slopesprime()
,
slopes()
Ivan Jacob Agaloos Pesigan