R/betahat_matrix.R
    dot-slopeshat.RdEstimates of Regression Slopes \(\boldsymbol{\hat{\beta}}_{2, \cdots, k}\)
.slopeshat(SigmaXhat = NULL, sigmayXhat = NULL, X, y)
| SigmaXhat | 
  | 
    
|---|---|
| sigmayXhat | Numeric vector of length   | 
    
| X | 
  | 
    
| y | Numeric vector of length   | 
    
Returns the estimated slopes \(\boldsymbol{\hat{\beta}}_{2, \cdots, k}\) of a linear regression model derived from the estimated variance-covariance matrix.
Estimates of the linear regression slopes are calculated using $$ \boldsymbol{\hat{\beta}}_{2, \cdots, k} = \boldsymbol{\hat{\Sigma}}_{\mathbf{X}}^{T} \boldsymbol{\hat{\sigma}}_{\mathbf{y}, \mathbf{X}} $$
where
\(\boldsymbol{\hat{\Sigma}}_{\mathbf{X}}\) is the \(p \times p\) covariance matrix of the regressor variables \(X_2, X_3, \cdots, X_k\) and
\(\boldsymbol{\hat{\sigma}}_{\mathbf{y}, \mathbf{X}}\) is the \(p \times 1\) column vector of the covariances between the regressand \(y\) variable and regressor variables \(X_2, X_3, \cdots, X_k\)
Other beta-hat functions: 
.betahatnorm(),
.betahatqr(),
.betahatsvd(),
.intercepthat(),
.slopeshatprime(),
betahat(),
intercepthat(),
slopeshatprime(),
slopeshat()
Ivan Jacob Agaloos Pesigan