Estimates coefficients of a linear regression model.
betahat(X, y, qr = TRUE)
X |
|
---|---|
y | Numeric vector of length |
qr | Logical.
If |
Returns \(\boldsymbol{\hat{\beta}}\), that is, a \(k \times 1\) vector of estimates of \(k\) unknown regression coefficients estimated using ordinary least squares.
Calculates coefficients using the normal equation.
When that fails, QR decomposition is used when qr = TRUE
or singular value decomposition when qr = FALSE
.
Wikipedia: Ordinary least squares
Wikipedia: Inverting the matrix of the normal equations
Wikipedia: Singular value decomposition
Wikipedia: Orthogonal decomposition methods
Other beta-hat functions:
.betahatnorm()
,
.betahatqr()
,
.betahatsvd()
,
.intercepthat()
,
.slopeshatprime()
,
.slopeshat()
,
intercepthat()
,
slopeshatprime()
,
slopeshat()
Ivan Jacob Agaloos Pesigan
# Simple regression------------------------------------------------ X <- jeksterslabRdatarepo::wages.matrix[["X"]] X <- X[, c(1, ncol(X))] y <- jeksterslabRdatarepo::wages.matrix[["y"]] betahat(X = X, y = y)#> betahat #> constant 4.874251 #> age 0.197486# Multiple regression---------------------------------------------- X <- jeksterslabRdatarepo::wages.matrix[["X"]] # age is removed X <- X[, -ncol(X)] betahat(X = X, y = y)#> betahat #> constant -7.1833382 #> gender -3.0748755 #> race -1.5653133 #> union 1.0959758 #> education 1.3703010 #> experience 0.1666065