Estimated Regression Intercept \(\hat{\beta}_{1}\)
intercepthat(X, y)
X |
|
---|---|
y | Numeric vector of length |
Returns the estimated intercept \(\hat{\beta}_1\) of a linear regression model derived from the estimated means and the slopes \(\left( \boldsymbol{\hat{\beta}}_{2, \cdots, k} \right)\) .
The intercept \(\beta_1\) is given by $$ \hat{\beta}_1 = \hat{\mu}_y - \boldsymbol{\hat{\mu}}_{\mathbf{X}} \boldsymbol{\hat{\beta}}_{2, \cdots, k}^{T} . $$
Other beta-hat functions:
.betahatnorm()
,
.betahatqr()
,
.betahatsvd()
,
.intercepthat()
,
.slopeshatprime()
,
.slopeshat()
,
betahat()
,
slopeshatprime()
,
slopeshat()
Ivan Jacob Agaloos Pesigan
# Simple regression------------------------------------------------ X <- jeksterslabRdatarepo::wages.matrix[["X"]] X <- X[, c(1, ncol(X))] y <- jeksterslabRdatarepo::wages.matrix[["y"]] intercepthat(X = X, y = y)#> wages #> 4.874251# Multiple regression---------------------------------------------- X <- jeksterslabRdatarepo::wages.matrix[["X"]] # age is removed X <- X[, -ncol(X)] intercepthat(X = X, y = y)#> wages #> -7.183338