R/sehat.R
dot-sehatslopeshatprimetb.Rd
Standard Errors of Standardized Estimates of Regression Coefficients (Textbook)
.sehatslopeshatprimetb( slopeshat = NULL, sehatslopeshat = NULL, slopeshatprime = NULL, X, y )
slopeshat | Numeric vector of length |
---|---|
sehatslopeshat | Numeric vector of length |
slopeshatprime | Numeric vector of length |
X |
|
y | Numeric vector of length |
$$ \mathbf{\widehat{se}}_{\boldsymbol{\hat{\beta}}_{2, \cdots, k}^{\prime}} = \mathbf{\widehat{se}}_{\boldsymbol{\hat{\beta}}_{2, \cdots, k}} \frac{\boldsymbol{\hat{\beta}}_{2, \cdots, k}^{\prime}}{\boldsymbol{\hat{\beta}}_{2, \cdots, k}} $$ According to Yuan and Chan (2011), this standard error is biased.
Yuan, K., Chan, W. (2011). Biases and Standard Errors of Standardized Regression Coefficients. Psychometrika 76, 670-690. doi:10.1007/s11336-011-9224-6.
Other standard errors of estimates of regression coefficients functions:
.sehatbetahatbiased()
,
.sehatbetahat()
,
.sehatslopeshatprimedelta()
,
sehatbetahatbiased()
,
sehatbetahat()
,
sehatslopeshatprimedelta()
,
sehatslopeshatprimetb()
Ivan Jacob Agaloos Pesigan