Standard Errors of Standardized Estimates of Regression Coefficients (Textbook)

sehatslopeshatprimetb(X, y)

Arguments

X

n by k numeric matrix. The data matrix \(\mathbf{X}\) (also known as design matrix, model matrix or regressor matrix) is an \(n \times k\) matrix of \(n\) observations of \(k\) regressors, which includes a regressor whose value is 1 for each observation on the first column.

y

Numeric vector of length n or n by 1 matrix. The vector \(\mathbf{y}\) is an \(n \times 1\) vector of observations on the regressand variable.

References

Yuan, K., Chan, W. (2011). Biases and Standard Errors of Standardized Regression Coefficients. Psychometrika 76, 670-690. doi:10.1007/s11336-011-9224-6.

See also

Other standard errors of estimates of regression coefficients functions: .sehatbetahatbiased(), .sehatbetahat(), .sehatslopeshatprimedelta(), .sehatslopeshatprimetb(), sehatbetahatbiased(), sehatbetahat(), sehatslopeshatprimedelta()

Author

Ivan Jacob Agaloos Pesigan

Examples

# Simple regression------------------------------------------------ X <- jeksterslabRdatarepo::wages.matrix[["X"]] X <- X[, c(1, ncol(X))] y <- jeksterslabRdatarepo::wages.matrix[["y"]] sehatslopeshatprimetb(X = X, y = y)
#> sehatslopeshatprime #> [1,] 0.02669814
# Multiple regression---------------------------------------------- X <- jeksterslabRdatarepo::wages.matrix[["X"]] # age is removed X <- X[, -ncol(X)] sehatslopeshatprimetb(X = X, y = y)
#> sehatslopeshatprime #> [1,] 0.02309626 #> [2,] 0.02321194 #> [3,] 0.02344760 #> [4,] 0.02348462 #> [5,] 0.02370209