\(\widehat{\mathbf{se}}\) is equal to the square root of the diagonal elements of \(\widehat{\mathrm{cov}} \left( \boldsymbol{\hat{\beta}} \right)\) .

sehatbetahat(X, y)

Arguments

X

n by k numeric matrix. The data matrix \(\mathbf{X}\) (also known as design matrix, model matrix or regressor matrix) is an \(n \times k\) matrix of \(n\) observations of \(k\) regressors, which includes a regressor whose value is 1 for each observation on the first column.

y

Numeric vector of length n or n by 1 matrix. The vector \(\mathbf{y}\) is an \(n \times 1\) vector of observations on the regressand variable.

See also

Other standard errors of estimates of regression coefficients functions: .sehatbetahatbiased(), .sehatbetahat(), .sehatslopeshatprimedelta(), .sehatslopeshatprimetb(), sehatbetahatbiased(), sehatslopeshatprimedelta(), sehatslopeshatprimetb()

Author

Ivan Jacob Agaloos Pesigan

Examples

# Simple regression------------------------------------------------ X <- jeksterslabRdatarepo::wages.matrix[["X"]] X <- X[, c(1, ncol(X))] y <- jeksterslabRdatarepo::wages.matrix[["y"]] sehatbetahat(X = X, y = y)
#> sehatbetahat #> [1,] 0.72698105 #> [2,] 0.01834111
# Multiple regression---------------------------------------------- X <- jeksterslabRdatarepo::wages.matrix[["X"]] # age is removed X <- X[, -ncol(X)] sehatbetahat(X = X, y = y)
#> sehatbetahat #> [1,] 1.01578786 #> [2,] 0.36461621 #> [3,] 0.50918754 #> [4,] 0.50607809 #> [5,] 0.06590421 #> [6,] 0.01604756