R/sehat.R
dot-sehatslopeshatprimedelta.Rd
Standard Errors of Standardized Estimates of Regression Coefficients (Yuan and Chan (2011))
.sehatslopeshatprimedelta( slopeshat, sigma2hatepsilonhat, SigmaXhat, sigmayXhat, sigma2yhat, adjust = FALSE, n, X, y )
slopeshat | Numeric vector of length |
---|---|
sigma2hatepsilonhat | Numeric. Estimate of error variance. |
SigmaXhat |
|
sigmayXhat | Numeric vector of length |
sigma2yhat | Numeric. Estimated variance of the regressand \(\left( \hat{\sigma}_{y}^{2} \right)\) |
adjust | Logical. Use \(n - 3\) adjustment for small samples. |
n | Integer. Sample size. |
X |
|
y | Numeric vector of length |
The \(p\)th estimated standard error is calculated using $$ \mathbf{\widehat{se}}_{\boldsymbol{\hat{\beta}}_{\text{p}}^{\prime}} = \sqrt{ \frac{\hat{\sigma}_{X_{p}}^{2} \hat{c}_{p} \hat{\sigma}_{\hat{\varepsilon}}^{2}}{n \hat{\sigma}_{y}^{2}} + \frac{\hat{\beta}_{p}^{2} \left[ \hat{\sigma}_{X_{p}}^{2} \left( \boldsymbol{\hat{\beta}}^{T} \boldsymbol{\hat{\Sigma}}_{X} \boldsymbol{\hat{\beta}} \right) - \hat{\sigma}_{X_{p}}^{2} \hat{\sigma}_{\hat{\varepsilon}}^{2} - \hat{\sigma}_{y, X_{p}}^{2} \right]}{n \hat{\sigma}_{y}^{4}} } $$ where
\(p = \left\{2, 3, \cdots, k \right\}\)
\(\hat{\sigma}_{\hat{\varepsilon}}^{2}\) is the estimated residual variance
\(\boldsymbol{\hat{\beta}}_{2, 3, \cdots, k} = \left\{ \hat{\beta}_{2}, \hat{\beta}_{3}, \cdots, \hat{\beta}_{k}\right\}^{T}\) is the \(p \times 1\) column vector of estimated regression slopes
\(\hat{\sigma}_{y}^{2}\) is the variance of the regressand variable \(y\)
\(\boldsymbol{\hat{\Sigma}}_{\mathbf{X}}\) is the \(p \times p\) estimated covariance matrix of the regressor variables \(X_2, X_3, \cdots, X_k\)
\(\hat{\sigma}_{X_p}^{2}\) is the variance of the corresponding \(p\)th regressor variable.
\(\hat{\sigma}_{y, X_{p}}^{2}\) is the covariance of the regressand variable \(y\) and the regressor variables \(X_2, X_3, \cdots, X_k\)
\(c_p\) is the diagonal element that corresponds to the regressor variable in \(\boldsymbol{\Sigma}_{\mathbf{X}}^{-1}\)
\(n\) is the sample size
Yuan, K., Chan, W. (2011). Biases and Standard Errors of Standardized Regression Coefficients. Psychometrika 76, 670-690. doi:10.1007/s11336-011-9224-6.
Other standard errors of estimates of regression coefficients functions:
.sehatbetahatbiased()
,
.sehatbetahat()
,
.sehatslopeshatprimetb()
,
sehatbetahatbiased()
,
sehatbetahat()
,
sehatslopeshatprimedelta()
,
sehatslopeshatprimetb()
Ivan Jacob Agaloos Pesigan
slopes <- c(-3.0748755, -1.5653133, 1.0959758, 1.3703010, 0.1666065) SigmaXhat <- matrix( data = c( 0.25018672, 0.00779108, -0.01626038, -0.04424864, -0.13217068, 0.00779108, 0.12957466, 0.01061297, -0.08818286, -0.16427222, -0.016260378, 0.010612975, 0.133848763, 0.004083767, 0.658462191, -0.044248635, -0.088182856, 0.004083767, 7.917601877, -5.910469742, -0.1321707, -0.1642722, 0.6584622, -5.9104697, 136.0217584 ), ncol = 5 ) sigma2hatepsilonhat <- 42.35584 sigma2yhat <- 62.35235 sigmayXhat <- c(-0.8819639, -0.3633559, 0.2953811, 10.1433433, 15.9481950) n <- 1289 .sehatslopeshatprimedelta( slopes = slopes, sigma2hatepsilonhat = sigma2hatepsilonhat, SigmaXhat = SigmaXhat, sigma2yhat = sigma2yhat, sigmayXhat = sigmayXhat, n = n )#> sehatslopeshatprime #> [1,] 0.02282716 #> [2,] 0.02317122 #> [3,] 0.02342286 #> [4,] 0.02113537 #> [5,] 0.02330714