Standard Errors of Standardized Estimates of Regression Coefficients (Yuan and Chan (2011))

.sehatslopeshatprimedelta(
  slopeshat,
  sigma2hatepsilonhat,
  SigmaXhat,
  sigmayXhat,
  sigma2yhat,
  adjust = FALSE,
  n,
  X,
  y
)

Arguments

slopeshat

Numeric vector of length p or p by 1 matrix. \(p \times 1\) column vector of estimated regression slopes \(\left( \boldsymbol{\hat{\beta}}_{2, 3, \cdots, k} = \left\{ \hat{\beta}_2, \hat{\beta}_3, \cdots, \hat{\beta}_k \right\}^{T} \right)\) .

sigma2hatepsilonhat

Numeric. Estimate of error variance.

SigmaXhat

p by p numeric matrix. \(p \times p\) matrix of estimated variances and covariances between regressor variables \(X_2, X_3, \cdots, X_k\) \(\left( \boldsymbol{\hat{\Sigma}}_{\mathbf{X}} \right)\).

sigmayXhat

Numeric vector of length p or p by 1 matrix. \(p \times 1\) vector of estimated covariances between the regressand \(y\) variable and regressor variables \(X_2, X_3, \cdots, X_k\) \(\left( \boldsymbol{\hat{\sigma}}_{\mathbf{y}, \mathbf{X}} = \left\{ \hat{\sigma}_{y, X_2}, \hat{\sigma}_{y, X_3}, \cdots, \hat{\sigma}_{y, X_k} \right\}^{T} \right)\).

sigma2yhat

Numeric. Estimated variance of the regressand \(\left( \hat{\sigma}_{y}^{2} \right)\)

adjust

Logical. Use \(n - 3\) adjustment for small samples.

n

Integer. Sample size.

X

n by k numeric matrix. The data matrix \(\mathbf{X}\) (also known as design matrix, model matrix or regressor matrix) is an \(n \times k\) matrix of \(n\) observations of \(k\) regressors, which includes a regressor whose value is 1 for each observation on the first column.

y

Numeric vector of length n or n by 1 matrix. The vector \(\mathbf{y}\) is an \(n \times 1\) vector of observations on the regressand variable.

Details

The \(p\)th estimated standard error is calculated using $$ \mathbf{\widehat{se}}_{\boldsymbol{\hat{\beta}}_{\text{p}}^{\prime}} = \sqrt{ \frac{\hat{\sigma}_{X_{p}}^{2} \hat{c}_{p} \hat{\sigma}_{\hat{\varepsilon}}^{2}}{n \hat{\sigma}_{y}^{2}} + \frac{\hat{\beta}_{p}^{2} \left[ \hat{\sigma}_{X_{p}}^{2} \left( \boldsymbol{\hat{\beta}}^{T} \boldsymbol{\hat{\Sigma}}_{X} \boldsymbol{\hat{\beta}} \right) - \hat{\sigma}_{X_{p}}^{2} \hat{\sigma}_{\hat{\varepsilon}}^{2} - \hat{\sigma}_{y, X_{p}}^{2} \right]}{n \hat{\sigma}_{y}^{4}} } $$ where

  • \(p = \left\{2, 3, \cdots, k \right\}\)

  • \(\hat{\sigma}_{\hat{\varepsilon}}^{2}\) is the estimated residual variance

  • \(\boldsymbol{\hat{\beta}}_{2, 3, \cdots, k} = \left\{ \hat{\beta}_{2}, \hat{\beta}_{3}, \cdots, \hat{\beta}_{k}\right\}^{T}\) is the \(p \times 1\) column vector of estimated regression slopes

  • \(\hat{\sigma}_{y}^{2}\) is the variance of the regressand variable \(y\)

  • \(\boldsymbol{\hat{\Sigma}}_{\mathbf{X}}\) is the \(p \times p\) estimated covariance matrix of the regressor variables \(X_2, X_3, \cdots, X_k\)

  • \(\hat{\sigma}_{X_p}^{2}\) is the variance of the corresponding \(p\)th regressor variable.

  • \(\hat{\sigma}_{y, X_{p}}^{2}\) is the covariance of the regressand variable \(y\) and the regressor variables \(X_2, X_3, \cdots, X_k\)

  • \(c_p\) is the diagonal element that corresponds to the regressor variable in \(\boldsymbol{\Sigma}_{\mathbf{X}}^{-1}\)

  • \(n\) is the sample size

References

Yuan, K., Chan, W. (2011). Biases and Standard Errors of Standardized Regression Coefficients. Psychometrika 76, 670-690. doi:10.1007/s11336-011-9224-6.

See also

Other standard errors of estimates of regression coefficients functions: .sehatbetahatbiased(), .sehatbetahat(), .sehatslopeshatprimetb(), sehatbetahatbiased(), sehatbetahat(), sehatslopeshatprimedelta(), sehatslopeshatprimetb()

Author

Ivan Jacob Agaloos Pesigan

Examples

slopes <- c(-3.0748755, -1.5653133, 1.0959758, 1.3703010, 0.1666065) SigmaXhat <- matrix( data = c( 0.25018672, 0.00779108, -0.01626038, -0.04424864, -0.13217068, 0.00779108, 0.12957466, 0.01061297, -0.08818286, -0.16427222, -0.016260378, 0.010612975, 0.133848763, 0.004083767, 0.658462191, -0.044248635, -0.088182856, 0.004083767, 7.917601877, -5.910469742, -0.1321707, -0.1642722, 0.6584622, -5.9104697, 136.0217584 ), ncol = 5 ) sigma2hatepsilonhat <- 42.35584 sigma2yhat <- 62.35235 sigmayXhat <- c(-0.8819639, -0.3633559, 0.2953811, 10.1433433, 15.9481950) n <- 1289 .sehatslopeshatprimedelta( slopes = slopes, sigma2hatepsilonhat = sigma2hatepsilonhat, SigmaXhat = SigmaXhat, sigma2yhat = sigma2yhat, sigmayXhat = sigmayXhat, n = n )
#> sehatslopeshatprime #> [1,] 0.02282716 #> [2,] 0.02317122 #> [3,] 0.02342286 #> [4,] 0.02113537 #> [5,] 0.02330714