Estimated Regression Intercept \(\hat{\beta}_{1}\)
.intercepthat(slopeshat = NULL, muyhat = NULL, muXhat = NULL, X, y)
| slopeshat | Numeric vector of length   | 
    
|---|---|
| muyhat | Numeirc. Estimated mean of the regressand variable \(y\) \(\left( \hat{\mu}_y \right)\).  | 
    
| muXhat | Vector of length   | 
    
| X | 
  | 
    
| y | Numeric vector of length   | 
    
Returns the estimated intercept \(\hat{\beta}_1\) of a linear regression model derived from the estimated means and the slopes \(\left( \boldsymbol{\hat{\beta}}_{2, \cdots, k} \right)\) .
The intercept \(\beta_1\) is given by $$ \hat{\beta}_1 = \hat{\mu}_y - \boldsymbol{\hat{\mu}}_{\mathbf{X}} \boldsymbol{\hat{\beta}}_{2, \cdots, k}^{T} . $$
Other beta-hat functions: 
.betahatnorm(),
.betahatqr(),
.betahatsvd(),
.slopeshatprime(),
.slopeshat(),
betahat(),
intercepthat(),
slopeshatprime(),
slopeshat()
Ivan Jacob Agaloos Pesigan