R/betahat.R
dot-betahatqr.RdEstimates coefficients of a linear regression model using QR Decomposition. The data matrix \(\mathbf{X}\) is decomposed into $$ \mathbf{X} = \mathbf{Q} \mathbf{R} . $$ Estimates are found by solving \(\boldsymbol{\hat{\beta}}\) in $$ \mathbf{R} \boldsymbol{\hat{\beta}} = \mathbf{Q}^{T} \mathbf{y}. $$
.betahatqr(X, y)
| X |
|
|---|---|
| y | Numeric vector of length |
Returns \(\boldsymbol{\hat{\beta}}\), that is, a \(k \times 1\) vector of estimates of \(k\) unknown regression coefficients estimated using ordinary least squares.
Wikipedia: Ordinary least squares
Wikipedia: Orthogonal decomposition methods
Other beta-hat functions:
.betahatnorm(),
.betahatsvd(),
.intercepthat(),
.slopeshatprime(),
.slopeshat(),
betahat(),
intercepthat(),
slopeshatprime(),
slopeshat()
Ivan Jacob Agaloos Pesigan
# Simple regression------------------------------------------------ X <- jeksterslabRdatarepo::wages.matrix[["X"]] X <- X[, c(1, ncol(X))] y <- jeksterslabRdatarepo::wages.matrix[["y"]] .betahatqr(X = X, y = y)#> betahat #> [1,] 4.874251 #> [2,] 0.197486# Multiple regression---------------------------------------------- X <- jeksterslabRdatarepo::wages.matrix[["X"]] # age is removed X <- X[, -ncol(X)] .betahatqr(X = X, y = y)#> betahat #> [1,] -7.1833382 #> [2,] -3.0748755 #> [3,] -1.5653133 #> [4,] 1.0959758 #> [5,] 1.3703010 #> [6,] 0.1666065