Estimates coefficients of a linear regression model using $$ \boldsymbol{\hat{\beta}} = \left( \mathbf{X}^{T} \mathbf{X} \right)^{-1} \left( \mathbf{X}^{T} \mathbf{y} \right) . $$ Also know as the normal equation.

.betahatnorm(X, y)

Arguments

X

n by k numeric matrix. The data matrix \(\mathbf{X}\) (also known as design matrix, model matrix or regressor matrix) is an \(n \times k\) matrix of \(n\) observations of \(k\) regressors, which includes a regressor whose value is 1 for each observation on the first column.

y

Numeric vector of length n or n by 1 matrix. The vector \(\mathbf{y}\) is an \(n \times 1\) vector of observations on the regressand variable.

Value

Returns \(\boldsymbol{\hat{\beta}}\), that is, a \(k \times 1\) vector of estimates of \(k\) unknown regression coefficients estimated using ordinary least squares.

References

Wikipedia: Linear regression

Wikipedia: Ordinary least squares

Wikipedia: Inverting the matrix of the normal equations

Wikipedia: Design matrix

See also

Author

Ivan Jacob Agaloos Pesigan

Examples

# Simple regression------------------------------------------------ X <- jeksterslabRdatarepo::wages.matrix[["X"]] X <- X[, c(1, ncol(X))] y <- jeksterslabRdatarepo::wages.matrix[["y"]] .betahatnorm(X = X, y = y)
#> betahat #> constant 4.874251 #> age 0.197486
# Multiple regression---------------------------------------------- X <- jeksterslabRdatarepo::wages.matrix[["X"]] # age is removed X <- X[, -ncol(X)] .betahatnorm(X = X, y = y)
#> betahat #> constant -7.1833382 #> gender -3.0748755 #> race -1.5653133 #> union 1.0959758 #> education 1.3703010 #> experience 0.1666065