R/betahat.R
dot-betahatnorm.Rd
Estimates coefficients of a linear regression model using $$ \boldsymbol{\hat{\beta}} = \left( \mathbf{X}^{T} \mathbf{X} \right)^{-1} \left( \mathbf{X}^{T} \mathbf{y} \right) . $$ Also know as the normal equation.
.betahatnorm(X, y)
X |
|
---|---|
y | Numeric vector of length |
Returns \(\boldsymbol{\hat{\beta}}\), that is, a \(k \times 1\) vector of estimates of \(k\) unknown regression coefficients estimated using ordinary least squares.
Wikipedia: Ordinary least squares
Wikipedia: Inverting the matrix of the normal equations
Other beta-hat functions:
.betahatqr()
,
.betahatsvd()
,
.intercepthat()
,
.slopeshatprime()
,
.slopeshat()
,
betahat()
,
intercepthat()
,
slopeshatprime()
,
slopeshat()
Ivan Jacob Agaloos Pesigan
# Simple regression------------------------------------------------ X <- jeksterslabRdatarepo::wages.matrix[["X"]] X <- X[, c(1, ncol(X))] y <- jeksterslabRdatarepo::wages.matrix[["y"]] .betahatnorm(X = X, y = y)#> betahat #> constant 4.874251 #> age 0.197486# Multiple regression---------------------------------------------- X <- jeksterslabRdatarepo::wages.matrix[["X"]] # age is removed X <- X[, -ncol(X)] .betahatnorm(X = X, y = y)#> betahat #> constant -7.1833382 #> gender -3.0748755 #> race -1.5653133 #> union 1.0959758 #> education 1.3703010 #> experience 0.1666065