R/yhat.R
    dot-Xbetahat.RdCalculates y-hat \(\left( \mathbf{\hat{y}} \right)\), that is, the predicted value of \(\mathbf{y}\) given \(\mathbf{X}\) using $$ \mathbf{\hat{y}} = \mathbf{X} \boldsymbol{\hat{\beta}} $$ where $$ \boldsymbol{\hat{\beta}} = \left( \mathbf{X}^{T} \mathbf{X} \right)^{-1} \left( \mathbf{X}^{T} \mathbf{y} \right) . $$
.Xbetahat(X, betahat = NULL, y = NULL)
| X | 
  | 
    
|---|---|
| betahat | Numeric vector of length   | 
    
| y | Numeric vector of length   | 
    
Returns y-hat \(\left( \mathbf{\hat{y}} \right)\).
If betahat = NULL, the betahat vector is computed
using betahat() with X and y as arguments.
If betahat is provided, y is not needed.
Wikipedia: Ordinary Least Squares
Ivan Jacob Agaloos Pesigan