R/yhat.R
Xbetahat.Rd
Calculates y-hat \(\left( \mathbf{\hat{y}} \right)\), that is, the predicted value of \(\mathbf{y}\) given \(\mathbf{X}\) using $$ \mathbf{\hat{y}} = \mathbf{X} \boldsymbol{\hat{\beta}} $$ where $$ \boldsymbol{\hat{\beta}} = \left( \mathbf{X}^{T} \mathbf{X} \right)^{-1} \left( \mathbf{X}^{T} \mathbf{y} \right) . $$
Xbetahat(X, y)
X |
|
---|---|
y | Numeric vector of length |
Returns y-hat \(\left( \mathbf{\hat{y}} \right)\).
Wikipedia: Ordinary Least Squares
Ivan Jacob Agaloos Pesigan
# Simple regression------------------------------------------------ X <- jeksterslabRdatarepo::wages.matrix[["X"]] X <- X[, c(1, ncol(X))] y <- jeksterslabRdatarepo::wages.matrix[["y"]] Xbetahat <- Xbetahat(X = X, y = y) hist(Xbetahat)# Multiple regression---------------------------------------------- X <- jeksterslabRdatarepo::wages.matrix[["X"]] # age is removed X <- X[, -ncol(X)] Xbetahat <- Xbetahat(X = X, y = y) hist(Xbetahat)