Parameters
FUN <- rnorm
n <- 10000
mu <- 100
sigma <- 15
args <- list(
n = rep(
x = n,
times = 10000
),
mean = mu,
sd = sigma
)
par <- FALSE
ncores <- NULL
Variable <- c(
"`FUN`",
"`n`",
"`mu` named as `mean` in `args`.",
"`sigma` named as `sd` in `args`."
)
Description <- c(
"Function.",
"Number of observations.",
"Population mean $\\left( \\mu \\right)$.",
"Standard deviation $\\left( \\sigma \\right)$."
)
Value <- c(
"`rnorm`",
n,
mu,
sigma
)
knitr::kable(
x = data.frame(
Variable,
Description,
Value
),
row.names = FALSE
)
FUN |
Function. |
rnorm |
n |
Number of observations. |
10000 |
mu named as mean in args . |
Population mean \(\left( \mu \right)\). |
100 |
sigma named as sd in args . |
Standard deviation \(\left( \sigma \right)\). |
15 |
Run test
sample <- util_lapply(
FUN = FUN,
args = args,
par = par,
ncores = ncores
)
sample_means <- unlist(
util_lapply(
FUN = mean,
args = c(x = sample),
par = par,
ncores = ncores
)
)
mean_of_means <- mean(sample_means)
mean_of_ns <- mean(
lengths(sample)
)
Results
Description <- c(
"Sample size.",
"Mean of means."
)
Parameter <- c(
n,
mu
)
Result <- c(
mean_of_ns,
mean_of_means
)
knitr::kable(
x = data.frame(
Description,
Parameter,
Result
),
row.names = FALSE
)
Sample size. |
10000 |
10000.00000 |
Mean of means. |
100 |
99.74345 |