R/mvn_complete_std_mc.mvn.sem.R
mvn_std_mc.mvn.sem.RdMonte Carlo Method Assuming Multivariate Normal Distribution using SEM Standard Errors for Indirect Effect in a Standardized Simple Mediation Model for Data Generated from a Multivariate Normal Distribution
mvn_std_mc.mvn.sem( taskid, R = 20000L, alphahatprime, sehatalphahatprimesem, betahatprime, sehatbetahatprimesem )
| taskid | Numeric. Task ID. |
|---|---|
| R | Integer. Monte Carlo replications. |
| alphahatprime | Numeric.
Estimated standardized slope of path from |
| sehatalphahatprimesem | Numeric.
Estimated SEM standard error of standardized slope of path from |
| betahatprime | Numeric.
Estimated standardized slope of path from |
| sehatbetahatprimesem | Numeric.
Estimated SEM standard error of standardized slope of path from |
Other monte carlo method functions:
beta_ols_mc.mvn_pcci_simulation(),
beta_ols_mc.mvn_pcci_task(),
beta_ols_mc.mvn_simulation(),
beta_ols_mc.mvn_task(),
beta_ols_mc.mvn(),
exp_ols_mc.mvn_pcci_simulation(),
exp_ols_mc.mvn_pcci_task(),
exp_ols_mc.mvn_simulation(),
exp_ols_mc.mvn_task(),
exp_ols_mc.mvn(),
mc.mvn(),
mc.t(),
mc.wishart(),
mvn_mar_10_mc.mvn_pcci_simulation(),
mvn_mar_10_mc.mvn_pcci_task(),
mvn_mar_10_mc.mvn_simulation(),
mvn_mar_10_mc.mvn_task(),
mvn_mar_10_mc.mvn(),
mvn_mar_20_mc.mvn_pcci_simulation(),
mvn_mar_20_mc.mvn_pcci_task(),
mvn_mar_20_mc.mvn_simulation(),
mvn_mar_20_mc.mvn_task(),
mvn_mar_20_mc.mvn(),
mvn_mar_30_mc.mvn_pcci_simulation(),
mvn_mar_30_mc.mvn_pcci_task(),
mvn_mar_30_mc.mvn_simulation(),
mvn_mar_30_mc.mvn_task(),
mvn_mar_30_mc.mvn(),
mvn_mcar_10_mc.mvn_pcci_simulation(),
mvn_mcar_10_mc.mvn_pcci_task(),
mvn_mcar_10_mc.mvn_simulation(),
mvn_mcar_10_mc.mvn_task(),
mvn_mcar_10_mc.mvn(),
mvn_mcar_20_mc.mvn_pcci_simulation(),
mvn_mcar_20_mc.mvn_pcci_task(),
mvn_mcar_20_mc.mvn_simulation(),
mvn_mcar_20_mc.mvn_task(),
mvn_mcar_20_mc.mvn(),
mvn_mcar_30_mc.mvn_pcci_simulation(),
mvn_mcar_30_mc.mvn_pcci_task(),
mvn_mcar_30_mc.mvn_simulation(),
mvn_mcar_30_mc.mvn_task(),
mvn_mcar_30_mc.mvn(),
mvn_mnar_10_mc.mvn_pcci_simulation(),
mvn_mnar_10_mc.mvn_pcci_task(),
mvn_mnar_10_mc.mvn_simulation(),
mvn_mnar_10_mc.mvn_task(),
mvn_mnar_10_mc.mvn(),
mvn_mnar_20_mc.mvn_pcci_simulation(),
mvn_mnar_20_mc.mvn_pcci_task(),
mvn_mnar_20_mc.mvn_simulation(),
mvn_mnar_20_mc.mvn_task(),
mvn_mnar_20_mc.mvn(),
mvn_mnar_30_mc.mvn_pcci_simulation(),
mvn_mnar_30_mc.mvn_pcci_task(),
mvn_mnar_30_mc.mvn_simulation(),
mvn_mnar_30_mc.mvn_task(),
mvn_mnar_30_mc.mvn(),
mvn_ols_mc.mvn_pcci_simulation(),
mvn_ols_mc.mvn_pcci_task(),
mvn_ols_mc.mvn_simulation(),
mvn_ols_mc.mvn_task(),
mvn_ols_mc.mvn(),
mvn_sem_mc.mvn_pcci_simulation(),
mvn_sem_mc.mvn_pcci_task(),
mvn_sem_mc.mvn_simulation(),
mvn_sem_mc.mvn_task(),
mvn_sem_mc.mvn(),
mvn_std_mc.mvn.delta_pcci_simulation(),
mvn_std_mc.mvn.delta_pcci_task(),
mvn_std_mc.mvn.delta_simulation(),
mvn_std_mc.mvn.delta_task(),
mvn_std_mc.mvn.delta(),
mvn_std_mc.mvn.sem_pcci_simulation(),
mvn_std_mc.mvn.sem_pcci_task(),
mvn_std_mc.mvn.sem_simulation(),
mvn_std_mc.mvn.sem_task(),
mvn_std_mc.mvn.tb_pcci_simulation(),
mvn_std_mc.mvn.tb_pcci_task(),
mvn_std_mc.mvn.tb_simulation(),
mvn_std_mc.mvn.tb_task(),
mvn_std_mc.mvn.tb(),
mvn_std_mc.wishart_pcci_simulation(),
mvn_std_mc.wishart_pcci_task(),
mvn_std_mc.wishart_simulation(),
mvn_std_mc.wishart_task(),
mvn_std_mc.wishart(),
vm_mod_ols_mc.mvn_pcci_simulation(),
vm_mod_ols_mc.mvn_pcci_task(),
vm_mod_ols_mc.mvn_simulation(),
vm_mod_ols_mc.mvn_task(),
vm_mod_ols_mc.mvn(),
vm_mod_sem_mc.mvn_pcci_simulation(),
vm_mod_sem_mc.mvn_pcci_task(),
vm_mod_sem_mc.mvn_simulation(),
vm_mod_sem_mc.mvn_task(),
vm_mod_sem_mc.mvn(),
vm_sev_ols_mc.mvn_pcci_simulation(),
vm_sev_ols_mc.mvn_pcci_task(),
vm_sev_ols_mc.mvn_simulation(),
vm_sev_ols_mc.mvn_task(),
vm_sev_ols_mc.mvn(),
vm_sev_sem_mc.mvn_pcci_simulation(),
vm_sev_sem_mc.mvn_pcci_task(),
vm_sev_sem_mc.mvn_simulation(),
vm_sev_sem_mc.mvn_task(),
vm_sev_sem_mc.mvn()
Ivan Jacob Agaloos Pesigan
#> [1] 0.4731409fit <- mvn_std_fit.sem(data = data, taskid = taskid) thetahatstar <- mvn_std_mc.mvn.sem( taskid = taskid, R = 20000L, alphahatprime = fit["alphahatprime"], sehatalphahatprimesem = fit["sehatalphahatprime"], betahatprime = fit["betahatprime"], sehatbetahatprimesem = fit["sehatbetahatprime"] ) hist(thetahatstar)