R/mc.R
mc.mvn.RdIn this method \(\alpha\) and \(\beta\) are assumed to follow a multivariate normal distribution.
mc.mvn(R = 20000L, alphahat, sehatalphahat, betahat, sehatbetahat)
| R | Integer. Monte Carlo replications. |
|---|---|
| alphahat | Numeric.
Estimated slope of path from |
| sehatalphahat | Numeric.
Estimated standard error of slope of path from |
| betahat | Numeric.
Estimated slope of path from |
| sehatbetahat | Numeric.
Estimated standard error of slope of path from |
Other monte carlo method functions:
beta_ols_mc.mvn_pcci_simulation(),
beta_ols_mc.mvn_pcci_task(),
beta_ols_mc.mvn_simulation(),
beta_ols_mc.mvn_task(),
beta_ols_mc.mvn(),
exp_ols_mc.mvn_pcci_simulation(),
exp_ols_mc.mvn_pcci_task(),
exp_ols_mc.mvn_simulation(),
exp_ols_mc.mvn_task(),
exp_ols_mc.mvn(),
mc.t(),
mc.wishart(),
mvn_mar_10_mc.mvn_pcci_simulation(),
mvn_mar_10_mc.mvn_pcci_task(),
mvn_mar_10_mc.mvn_simulation(),
mvn_mar_10_mc.mvn_task(),
mvn_mar_10_mc.mvn(),
mvn_mar_20_mc.mvn_pcci_simulation(),
mvn_mar_20_mc.mvn_pcci_task(),
mvn_mar_20_mc.mvn_simulation(),
mvn_mar_20_mc.mvn_task(),
mvn_mar_20_mc.mvn(),
mvn_mar_30_mc.mvn_pcci_simulation(),
mvn_mar_30_mc.mvn_pcci_task(),
mvn_mar_30_mc.mvn_simulation(),
mvn_mar_30_mc.mvn_task(),
mvn_mar_30_mc.mvn(),
mvn_mcar_10_mc.mvn_pcci_simulation(),
mvn_mcar_10_mc.mvn_pcci_task(),
mvn_mcar_10_mc.mvn_simulation(),
mvn_mcar_10_mc.mvn_task(),
mvn_mcar_10_mc.mvn(),
mvn_mcar_20_mc.mvn_pcci_simulation(),
mvn_mcar_20_mc.mvn_pcci_task(),
mvn_mcar_20_mc.mvn_simulation(),
mvn_mcar_20_mc.mvn_task(),
mvn_mcar_20_mc.mvn(),
mvn_mcar_30_mc.mvn_pcci_simulation(),
mvn_mcar_30_mc.mvn_pcci_task(),
mvn_mcar_30_mc.mvn_simulation(),
mvn_mcar_30_mc.mvn_task(),
mvn_mcar_30_mc.mvn(),
mvn_mnar_10_mc.mvn_pcci_simulation(),
mvn_mnar_10_mc.mvn_pcci_task(),
mvn_mnar_10_mc.mvn_simulation(),
mvn_mnar_10_mc.mvn_task(),
mvn_mnar_10_mc.mvn(),
mvn_mnar_20_mc.mvn_pcci_simulation(),
mvn_mnar_20_mc.mvn_pcci_task(),
mvn_mnar_20_mc.mvn_simulation(),
mvn_mnar_20_mc.mvn_task(),
mvn_mnar_20_mc.mvn(),
mvn_mnar_30_mc.mvn_pcci_simulation(),
mvn_mnar_30_mc.mvn_pcci_task(),
mvn_mnar_30_mc.mvn_simulation(),
mvn_mnar_30_mc.mvn_task(),
mvn_mnar_30_mc.mvn(),
mvn_ols_mc.mvn_pcci_simulation(),
mvn_ols_mc.mvn_pcci_task(),
mvn_ols_mc.mvn_simulation(),
mvn_ols_mc.mvn_task(),
mvn_ols_mc.mvn(),
mvn_sem_mc.mvn_pcci_simulation(),
mvn_sem_mc.mvn_pcci_task(),
mvn_sem_mc.mvn_simulation(),
mvn_sem_mc.mvn_task(),
mvn_sem_mc.mvn(),
mvn_std_mc.mvn.delta_pcci_simulation(),
mvn_std_mc.mvn.delta_pcci_task(),
mvn_std_mc.mvn.delta_simulation(),
mvn_std_mc.mvn.delta_task(),
mvn_std_mc.mvn.delta(),
mvn_std_mc.mvn.sem_pcci_simulation(),
mvn_std_mc.mvn.sem_pcci_task(),
mvn_std_mc.mvn.sem_simulation(),
mvn_std_mc.mvn.sem_task(),
mvn_std_mc.mvn.sem(),
mvn_std_mc.mvn.tb_pcci_simulation(),
mvn_std_mc.mvn.tb_pcci_task(),
mvn_std_mc.mvn.tb_simulation(),
mvn_std_mc.mvn.tb_task(),
mvn_std_mc.mvn.tb(),
mvn_std_mc.wishart_pcci_simulation(),
mvn_std_mc.wishart_pcci_task(),
mvn_std_mc.wishart_simulation(),
mvn_std_mc.wishart_task(),
mvn_std_mc.wishart(),
vm_mod_ols_mc.mvn_pcci_simulation(),
vm_mod_ols_mc.mvn_pcci_task(),
vm_mod_ols_mc.mvn_simulation(),
vm_mod_ols_mc.mvn_task(),
vm_mod_ols_mc.mvn(),
vm_mod_sem_mc.mvn_pcci_simulation(),
vm_mod_sem_mc.mvn_pcci_task(),
vm_mod_sem_mc.mvn_simulation(),
vm_mod_sem_mc.mvn_task(),
vm_mod_sem_mc.mvn(),
vm_sev_ols_mc.mvn_pcci_simulation(),
vm_sev_ols_mc.mvn_pcci_task(),
vm_sev_ols_mc.mvn_simulation(),
vm_sev_ols_mc.mvn_task(),
vm_sev_ols_mc.mvn(),
vm_sev_sem_mc.mvn_pcci_simulation(),
vm_sev_sem_mc.mvn_pcci_task(),
vm_sev_sem_mc.mvn_simulation(),
vm_sev_sem_mc.mvn_task(),
vm_sev_sem_mc.mvn()
Ivan Jacob Agaloos Pesigan
thetahatstar <- mc.mvn( R = 20000L, alphahat = 0.338593, sehatalphahat = 0.12236736, betahat = 0.451039, sehatbetahat = 0.14597405 ) hist(thetahatstar)