R/vcovhat.R
    dot-vcovhatbetahat.RdCalculates the variance-covariance matrix of estimates of regression coefficients using $$ \widehat{\mathrm{cov}} \left( \boldsymbol{\hat{\beta}} \right) = \hat{\sigma}_{\varepsilon}^2 \left( \mathbf{X}^{T} \mathbf{X} \right)^{-1} $$ where \(\hat{\sigma}_{\varepsilon}^{2}\) is the estimate of the error variance \(\sigma_{\varepsilon}^{2}\) and \(\mathbf{X}\) is the data matrix, that is, an \(n \times k\) matrix of \(n\) observations of \(k\) regressors, which includes a regressor whose value is 1 for each observation on the first column.
.vcovhatbetahat(sigma2hatepsilonhat = NULL, X, y)
| sigma2hatepsilonhat | Numeric. Estimate of error variance.  | 
    
|---|---|
| X | 
  | 
    
| y | Numeric vector of length   | 
    
Returns the variance-covariance matrix of estimates of regression coefficients.
If sigma2hatepsilonhat = NULL, sigma2hatepsilonhat is computed
using sigma2hatepsilonhat().
Wikipedia: Ordinary Least Squares
Other variance-covariance of estimates of regression coefficients functions: 
.vcovhatbetahatbiased(),
vcovhatbetahatbiased(),
vcovhatbetahat()
Ivan Jacob Agaloos Pesigan