R/sigma2hatepsilonhat.R
sigma2hatepsilonhat.Rd
Calculates an estimate of the error variance $$ \mathbf{E} \left( \sigma^2 \right) = \hat{\sigma}_{\hat{\varepsilon}}^{2} $$ $$ \hat{\sigma}_{\hat{\varepsilon}}^{2} = \frac{1}{n - k} \sum_{i = 1}^{n} \left( \mathbf{y} - \mathbf{X} \boldsymbol{\hat{\beta}} \right)^2 \\ = \frac{\boldsymbol{\hat{\varepsilon}}^{\prime} \boldsymbol{\hat{\varepsilon}}}{n - k} \\ = \frac{\mathrm{RSS}}{n - k}$$ where \(\boldsymbol{\hat{\varepsilon}}\) is the vector of residuals, \(\mathrm{RSS}\) is the residual sum of squares, \(n\) is the sample size, and \(k\) is the number of regressors including a regressor whose value is 1 for each observation on the first column.
sigma2hatepsilonhat(X, y)
X |
|
---|---|
y | Numeric vector of length |
Returns the estimated residual variance \(\hat{\sigma}_{\hat{\varepsilon}}^{2}\) .
Wikipedia: Ordinary Least Squares
Other residual variance functions:
.sigma2hatepsilonhatbiased()
,
.sigma2hatepsilonhat()
,
sigma2hatepsilonhatbiased()
Ivan Jacob Agaloos Pesigan
# Simple regression------------------------------------------------ X <- jeksterslabRdatarepo::wages.matrix[["X"]] X <- X[, c(1, ncol(X))] y <- jeksterslabRdatarepo::wages.matrix[["y"]] sigma2hatepsilonhat(X = X, y = y)#> [1] 57.24408# Multiple regression---------------------------------------------- X <- jeksterslabRdatarepo::wages.matrix[["X"]] # age is removed X <- X[, -ncol(X)] sigma2hatepsilonhat(X = X, y = y)#> [1] 42.35584