R/sigma2hatepsilonhat.R
dot-sigma2hatepsilonhat.Rd
Calculates an estimate of the error variance $$ \mathbf{E} \left( \sigma^2 \right) = \hat{\sigma}_{\hat{\varepsilon}}^{2} $$ $$ \hat{\sigma}_{\hat{\varepsilon}}^{2} = \frac{1}{n - k} \sum_{i = 1}^{n} \left( \mathbf{y} - \mathbf{X} \boldsymbol{\hat{\beta}} \right)^2 \\ = \frac{\boldsymbol{\hat{\varepsilon}}^{\prime} \boldsymbol{\hat{\varepsilon}}}{n - k} \\ = \frac{\mathrm{RSS}}{n - k}$$ where \(\boldsymbol{\hat{\varepsilon}}\) is the vector of residuals, \(\mathrm{RSS}\) is the residual sum of squares, \(n\) is the sample size, and \(k\) is the number of regressors including a regressor whose value is 1 for each observation on the first column.
.sigma2hatepsilonhat(RSS = NULL, n, k, X, y)
RSS | Numeric. Residual sum of squares. |
---|---|
n | Integer. Sample size. |
k | Integer. Number of regressors including a regressor whose value is 1 for each observation on the first column. |
X |
|
y | Numeric vector of length |
Returns the estimated residual variance \(\hat{\sigma}_{\hat{\varepsilon}}^{2}\) .
If RSS = NULL
, RSS
is computed using RSS()
.
If RSS
is provided, X
, and y
are not needed.
Wikipedia: Ordinary Least Squares
Other residual variance functions:
.sigma2hatepsilonhatbiased()
,
sigma2hatepsilonhatbiased()
,
sigma2hatepsilonhat()
Ivan Jacob Agaloos Pesigan