R/sigma2hatepsilonhat.R
    dot-sigma2hatepsilonhat.RdCalculates an estimate of the error variance $$ \mathbf{E} \left( \sigma^2 \right) = \hat{\sigma}_{\hat{\varepsilon}}^{2} $$ $$ \hat{\sigma}_{\hat{\varepsilon}}^{2} = \frac{1}{n - k} \sum_{i = 1}^{n} \left( \mathbf{y} - \mathbf{X} \boldsymbol{\hat{\beta}} \right)^2 \\ = \frac{\boldsymbol{\hat{\varepsilon}}^{\prime} \boldsymbol{\hat{\varepsilon}}}{n - k} \\ = \frac{\mathrm{RSS}}{n - k}$$ where \(\boldsymbol{\hat{\varepsilon}}\) is the vector of residuals, \(\mathrm{RSS}\) is the residual sum of squares, \(n\) is the sample size, and \(k\) is the number of regressors including a regressor whose value is 1 for each observation on the first column.
.sigma2hatepsilonhat(RSS = NULL, n, k, X, y)
| RSS | Numeric. Residual sum of squares.  | 
    
|---|---|
| n | Integer. Sample size.  | 
    
| k | Integer. Number of regressors including a regressor whose value is 1 for each observation on the first column.  | 
    
| X | 
  | 
    
| y | Numeric vector of length   | 
    
Returns the estimated residual variance \(\hat{\sigma}_{\hat{\varepsilon}}^{2}\) .
If RSS = NULL, RSS is computed using RSS().
If RSS is provided, X, and y are not needed.
Wikipedia: Ordinary Least Squares
Other residual variance functions: 
.sigma2hatepsilonhatbiased(),
sigma2hatepsilonhatbiased(),
sigma2hatepsilonhat()
Ivan Jacob Agaloos Pesigan