Calculates the root mean squared error \(\left( \mathrm{RMSE} \right)\) using $$ \mathrm{RMSE} = \sqrt{\frac{1}{n} \sum_{i = 1}^{n} \left( \mathbf{y} - \mathbf{X} \boldsymbol{\hat{\beta}} \right)^{2}} \\ = \sqrt{\frac{1}{n} \sum_{i = 1}^{n} \left( \mathbf{y} - \mathbf{\hat{y}} \right)^{2}} \\ = \sqrt{\frac{\mathrm{RSS}}{n}} . $$
.RMSE(MSE = NULL, X, y)
| MSE | Numeric. Mean square error.  | 
    
|---|---|
| X | 
  | 
    
| y | Numeric vector of length   | 
    
Returns the root mean squared error.
If MSE = NULL, MSE is computed using MSE()
with X and y as required arguments.
If MSE is provided, X, and y are not needed.
Wikipedia: Root-mean-square deviation
Other assessment of model quality functions: 
.MSE(),
.R2fromESS(),
.R2fromRSS(),
.Rbar2(),
.model(),
MSE(),
R2(),
RMSE(),
Rbar2(),
model()
Ivan Jacob Agaloos Pesigan