Calculates the root mean squared error \(\left( \mathrm{RMSE} \right)\) using $$ \mathrm{RMSE} = \sqrt{\frac{1}{n} \sum_{i = 1}^{n} \left( \mathbf{y} - \mathbf{X} \boldsymbol{\hat{\beta}} \right)^{2}} \\ = \sqrt{\frac{1}{n} \sum_{i = 1}^{n} \left( \mathbf{y} - \mathbf{\hat{y}} \right)^{2}} \\ = \sqrt{\frac{\mathrm{RSS}}{n}} . $$
.RMSE(MSE = NULL, X, y)
MSE | Numeric. Mean square error. |
---|---|
X |
|
y | Numeric vector of length |
Returns the root mean squared error.
If MSE = NULL
, MSE
is computed using MSE()
with X
and y
as required arguments.
If MSE
is provided, X
, and y
are not needed.
Wikipedia: Root-mean-square deviation
Other assessment of model quality functions:
.MSE()
,
.R2fromESS()
,
.R2fromRSS()
,
.Rbar2()
,
.model()
,
MSE()
,
R2()
,
RMSE()
,
Rbar2()
,
model()
Ivan Jacob Agaloos Pesigan