Model Assessment
model(X, y)
X |
|
---|---|
y | Numeric vector of length |
Returns a vector with the following elements
Residual sum of squares.
Mean squared error.
Root mean squared error.
R-squared \(\left( R^2 \right)\).
Adjusted R-squared \(\left( \bar{R}^2 \right)\) .
Wikipedia: Residual Sum of Squares
Wikipedia: Explained Sum of Squares
Wikipedia: Total Sum of Squares
Wikipedia: Coefficient of Determination
Other assessment of model quality functions:
.MSE()
,
.R2fromESS()
,
.R2fromRSS()
,
.RMSE()
,
.Rbar2()
,
.model()
,
MSE()
,
R2()
,
RMSE()
,
Rbar2()
Ivan Jacob Agaloos Pesigan
# Simple regression------------------------------------------------ X <- jeksterslabRdatarepo::wages.matrix[["X"]] X <- X[, c(1, ncol(X))] y <- jeksterslabRdatarepo::wages.matrix[["y"]] model(X = X, y = y)#> RSS MSE RMSE R2 Rbar2 #> 7.367313e+04 5.715526e+01 7.560110e+00 8.263864e-02 8.192585e-02# Multiple regression---------------------------------------------- X <- jeksterslabRdatarepo::wages.matrix[["X"]] # age is removed X <- X[, -ncol(X)] model(X = X, y = y)#> RSS MSE RMSE R2 Rbar2 #> 5.434254e+04 4.215868e+01 6.492972e+00 3.233388e-01 3.207018e-01