Calculates y-hat \(\left( \mathbf{\hat{y}} \right)\), that is, the predicted value of \(\mathbf{y}\) given \(\mathbf{X}\) using $$ \mathbf{\hat{y}} = \mathbf{P} \mathbf{y} $$ where $$ \mathbf{P} = \mathbf{X} \left( \mathbf{X}^{T} \mathbf{X} \right)^{-1} \mathbf{X}^{T} . $$
.Py(y, P = NULL, X = NULL)
| y | Numeric vector of length |
|---|---|
| P |
|
| X |
|
Returns y-hat \(\left( \mathbf{\hat{y}} \right)\).
If P = NULL, the P matrix is computed using P()
with X as its argument. If P is provided, X is not needed.
Wikipedia: Ordinary Least Squares
Ivan Jacob Agaloos Pesigan