R/epsilonhat.R
dot-My.Rd
Calculates residuals using $$ \boldsymbol{\hat{\varepsilon}} = \mathbf{My} . $$ where $$ \mathbf{M} = \mathbf{I} - \mathbf{P} \\ = \mathbf{I} - \mathbf{X} \left( \mathbf{X}^{T} \mathbf{X} \right)^{-1} \mathbf{X}^{T} . $$
.My(y, M = NULL, X = NULL, P = NULL)
y | Numeric vector of length |
---|---|
M |
|
X |
|
P |
|
Returns an \(n \times 1\) matrix of residuals \(\left( \boldsymbol{\hat{\varepsilon}} \right)\), that is, the difference between the observed \(\left( \mathbf{y} \right)\) and predicted \(\left( \mathbf{\hat{y}} \right)\) values of the regressand variable \(\left( \boldsymbol{\hat{\varepsilon}} = \mathbf{y} - \mathbf{\hat{y}} \right)\).
If M = NULL
, the M
matrix is computed using M()
with X
as a required argument and P
as an optional argument.
If M
is provided, X
and P
are not needed.
Wikipedia: Errors and Residuals
Other residuals functions:
.tepsilonhat()
,
.yminusyhat()
,
My()
,
epsilonhat()
,
tepsilonhat()
,
yminusyhat()
Ivan Jacob Agaloos Pesigan