Calculates the mean squared error \(\left( \mathrm{MSE} \right)\) using $$ \mathrm{MSE} = \frac{1}{n} \sum_{i = 1}^{n} \left( \mathbf{y} - \mathbf{X} \boldsymbol{\hat{\beta}} \right)^{2} \\ = \frac{1}{n} \sum_{i = 1}^{n} \left( \mathbf{y} - \mathbf{\hat{y}} \right)^{2} \\ = \frac{\mathrm{RSS}}{n} . $$
.MSE(RSS = NULL, n, X, y)
| RSS | Numeric. Residual sum of squares. |
|---|---|
| n | Integer. Sample size. |
| X |
|
| y | Numeric vector of length |
Returns the mean squared error.
If RSS = NULL, the RSS vector is computed using RSS()
with X and y as required arguments.
If RSS is provided, X, and y are not needed.
Other assessment of model quality functions:
.R2fromESS(),
.R2fromRSS(),
.RMSE(),
.Rbar2(),
.model(),
MSE(),
R2(),
RMSE(),
Rbar2(),
model()
Ivan Jacob Agaloos Pesigan