Calculates the mean squared error \(\left( \mathrm{MSE} \right)\) using $$ \mathrm{MSE} = \frac{1}{n} \sum_{i = 1}^{n} \left( \mathbf{y} - \mathbf{X} \boldsymbol{\hat{\beta}} \right)^{2} \\ = \frac{1}{n} \sum_{i = 1}^{n} \left( \mathbf{y} - \mathbf{\hat{y}} \right)^{2} \\ = \frac{\mathrm{RSS}}{n} . $$
.MSE(RSS = NULL, n, X, y)
RSS | Numeric. Residual sum of squares. |
---|---|
n | Integer. Sample size. |
X |
|
y | Numeric vector of length |
Returns the mean squared error.
If RSS = NULL
, the RSS
vector is computed using RSS()
with X
and y
as required arguments.
If RSS
is provided, X
, and y
are not needed.
Other assessment of model quality functions:
.R2fromESS()
,
.R2fromRSS()
,
.RMSE()
,
.Rbar2()
,
.model()
,
MSE()
,
R2()
,
RMSE()
,
Rbar2()
,
model()
Ivan Jacob Agaloos Pesigan