Mardia's estimate of multivariate skewness is given by $$ b_{1, k} = \frac{1}{n^2} \sum_{i = 1}^{n} \sum_{j = 1}^{n} \left[ \left( \mathbf{X}_{i} - \mathbf{\bar{X}} \right)^{T} \boldsymbol{\hat{\Sigma}}^{-1} \left( \mathbf{X}_{j} - \mathbf{\bar{X}} \right) \right]^{3} $$ where

  • \(\mathbf{X}\) is the \(n \times k\) sample data

  • \(\mathbf{\bar{X}}\) represent sample means

  • \(\mathbf{X}_{i} - \mathbf{\bar{X}}\) and \(\mathbf{X}_{j} - \mathbf{\bar{X}}\) represent deviations from the mean

  • \(\boldsymbol{\hat{\Sigma}}\) is the estimated variance-covariance matrix of \(\mathbf{X}\) using sample data

mardiaskew(X)

Arguments

X

Matrix or data frame.

Value

Returns a vector with the following elements

b1

Estimate of multivariate skewness \(\left( b_{1, k} \right)\) .

chisq

chi-square statistic \(\left( \frac{nb_{1, k}}{6} \right)\) .

df

Degrees of freedom \(\left( \frac{k(k + 1)(k + 2)}{6} \right)\) .

p

p-value associated with the chi-square statistic.

Details

If the null hypothesis that \(\mathbf{X}\) comes from a multivariate normal distribution is true, \(\frac{nb_{1, k}}{6}\) follows a chi-square \(\left( \chi^2 \right)\) distribution with a df of \(\frac{k(k + 1)(k + 2)}{6}\) .

References

Mardia, K. V. (1970). Measures of multivariate skewness and kurtosis with applications. Biometrika, 57(3), 519-530. doi:10.2307/2334770.

Mardia, K. V. (1974). Applications of Some Measures of Multivariate Skewness and Kurtosis in Testing Normality and Robustness Studies. Sankhyā: The Indian Journal of Statistics, Series B (1960-2002), 36(2), 115-128.

Examples

set.seed(42) n <- 100 mu <- c(0, 0, 0) Sigma <- matrix( data = c(1, 0.5, 0.5, 0.5, 1, 0.5, 0.5, 0.5, 1), ncol = 3 ) X <- MASS::mvrnorm(n = n, mu = mu, Sigma = Sigma) mardiaskew(X)
#> b1 b1.chisq b1.correction b1.chisq.corrected #> 1.510158866 25.169314434 1.030152993 25.928244596 #> b1.df b1.p b1.p.corrected #> 10.000000000 0.005033647 0.003837901