R/vm_mod_complete_std_fit.sem.mlr.R
vm_mod_std_fit.sem.mlr.RdFit Simple Mediation Model for Data Generated Using the Vale and Maurelli (1983) Approach (Skewness = 2, Kurtosis = 7) - Structural Equation Modeling
vm_mod_std_fit.sem.mlr(data, taskid)
| data |
|
|---|---|
| taskid | Numeric. Task ID. |
Other model fit functions:
beta_fit.ols_simulation_summary(),
beta_fit.ols_simulation(),
beta_fit.ols_task_summary(),
beta_fit.ols_task(),
beta_fit.ols(),
beta_fit.sem.mlr_simulation_summary(),
beta_fit.sem.mlr_simulation(),
beta_fit.sem.mlr_task_summary(),
beta_fit.sem.mlr_task(),
beta_fit.sem.mlr(),
beta_std_fit.sem.mlr_simulation_summary(),
beta_std_fit.sem.mlr_simulation(),
beta_std_fit.sem.mlr_task_summary(),
beta_std_fit.sem.mlr_task(),
beta_std_fit.sem.mlr(),
exp_fit.ols_simulation_summary(),
exp_fit.ols_simulation(),
exp_fit.ols_task_summary(),
exp_fit.ols_task(),
exp_fit.ols(),
exp_fit.sem.mlr_simulation_summary(),
exp_fit.sem.mlr_simulation(),
exp_fit.sem.mlr_task_summary(),
exp_fit.sem.mlr_task(),
exp_fit.sem.mlr(),
exp_std_fit.sem.mlr_simulation_summary(),
exp_std_fit.sem.mlr_simulation(),
exp_std_fit.sem.mlr_task_summary(),
exp_std_fit.sem.mlr_task(),
exp_std_fit.sem.mlr(),
fit.cov(),
fit.ols(),
fit.sem.mlr(),
fit.sem(),
mvn_fit.ols_simulation_summary(),
mvn_fit.ols_simulation(),
mvn_fit.ols_task_summary(),
mvn_fit.ols_task(),
mvn_fit.ols(),
mvn_fit.sem_simulation_summary(),
mvn_fit.sem_simulation(),
mvn_fit.sem_task_summary(),
mvn_fit.sem_task(),
mvn_fit.sem(),
mvn_mar_10_fit.sem_simulation_summary(),
mvn_mar_10_fit.sem_simulation(),
mvn_mar_10_fit.sem_task_summary(),
mvn_mar_10_fit.sem_task(),
mvn_mar_10_fit.sem(),
mvn_mar_20_fit.sem_simulation_summary(),
mvn_mar_20_fit.sem_simulation(),
mvn_mar_20_fit.sem_task_summary(),
mvn_mar_20_fit.sem_task(),
mvn_mar_20_fit.sem(),
mvn_mar_30_fit.sem_simulation_summary(),
mvn_mar_30_fit.sem_simulation(),
mvn_mar_30_fit.sem_task_summary(),
mvn_mar_30_fit.sem_task(),
mvn_mar_30_fit.sem(),
mvn_mcar_10_fit.sem_simulation_summary(),
mvn_mcar_10_fit.sem_simulation(),
mvn_mcar_10_fit.sem_task_summary(),
mvn_mcar_10_fit.sem_task(),
mvn_mcar_10_fit.sem(),
mvn_mcar_20_fit.sem_simulation_summary(),
mvn_mcar_20_fit.sem_simulation(),
mvn_mcar_20_fit.sem_task_summary(),
mvn_mcar_20_fit.sem_task(),
mvn_mcar_20_fit.sem(),
mvn_mcar_30_fit.sem_simulation_summary(),
mvn_mcar_30_fit.sem_simulation(),
mvn_mcar_30_fit.sem_task_summary(),
mvn_mcar_30_fit.sem_task(),
mvn_mcar_30_fit.sem(),
mvn_mnar_10_fit.sem_simulation_summary(),
mvn_mnar_10_fit.sem_simulation(),
mvn_mnar_10_fit.sem_task_summary(),
mvn_mnar_10_fit.sem_task(),
mvn_mnar_10_fit.sem(),
mvn_mnar_20_fit.sem_simulation_summary(),
mvn_mnar_20_fit.sem_simulation(),
mvn_mnar_20_fit.sem_task_summary(),
mvn_mnar_20_fit.sem_task(),
mvn_mnar_20_fit.sem(),
mvn_mnar_30_fit.sem_simulation_summary(),
mvn_mnar_30_fit.sem_simulation(),
mvn_mnar_30_fit.sem_task_summary(),
mvn_mnar_30_fit.sem_task(),
mvn_mnar_30_fit.sem(),
mvn_std_fit.sem_simulation_summary(),
mvn_std_fit.sem_simulation(),
mvn_std_fit.sem_task_summary(),
mvn_std_fit.sem_task(),
mvn_std_fit.sem(),
vm_mod_fit.ols_simulation_summary(),
vm_mod_fit.ols_simulation(),
vm_mod_fit.ols_task_summary(),
vm_mod_fit.ols_task(),
vm_mod_fit.ols(),
vm_mod_fit.sem.mlr_simulation_summary(),
vm_mod_fit.sem.mlr_simulation(),
vm_mod_fit.sem.mlr_task_summary(),
vm_mod_fit.sem.mlr_task(),
vm_mod_fit.sem.mlr(),
vm_mod_std_fit.sem.mlr_simulation_summary(),
vm_mod_std_fit.sem.mlr_simulation(),
vm_mod_std_fit.sem.mlr_task_summary(),
vm_mod_std_fit.sem.mlr_task(),
vm_sev_fit.ols_simulation_summary(),
vm_sev_fit.ols_simulation(),
vm_sev_fit.ols_task_summary(),
vm_sev_fit.ols_task(),
vm_sev_fit.ols(),
vm_sev_fit.sem.mlr_simulation_summary(),
vm_sev_fit.sem.mlr_simulation(),
vm_sev_fit.sem.mlr_task_summary(),
vm_sev_fit.sem.mlr_task(),
vm_sev_fit.sem.mlr(),
vm_sev_std_fit.sem.mlr_simulation_summary(),
vm_sev_std_fit.sem.mlr_simulation(),
vm_sev_std_fit.sem.mlr_task_summary(),
vm_sev_std_fit.sem.mlr_task(),
vm_sev_std_fit.sem.mlr()
Ivan Jacob Agaloos Pesigan
taskid <- 1 data <- vm_mod_dat(taskid = taskid) vm_mod_std_fit.sem.mlr(data = data, taskid = taskid)#> taskid n #> 1.000000e+00 1.000000e+03 #> reps taudot #> 5.000000e+03 1.414214e-01 #> beta alpha #> 7.140742e-01 7.140742e-01 #> alphabeta sigma2x #> 5.099020e-01 2.250000e+02 #> sigma2epsilonm sigma2epsilony #> 1.102721e+02 7.332210e+01 #> mux deltam #> 1.000000e+02 2.859258e+01 #> deltay lambdaxhat #> 1.445045e+01 1.564692e+01 #> lambdamhat lambdayhat #> 1.570052e+01 1.548888e+01 #> taudothatprime betahatprime #> 1.032557e-01 7.336598e-01 #> alphahatprime sigma2hatepsilonylatenthat #> 7.588104e-01 3.361149e-01 #> sigma2hatepsilonmlatenthat alphahatbetahat #> 4.242068e-01 5.567087e-01 #> sehatlambdaxhat sehatlambdamhat #> 9.095646e-01 8.001593e-01 #> sehatlambdayhat sehattaudothatprime #> 7.975389e-01 4.226920e-02 #> sehatbetahatprime sehatalphahatprime #> 3.778730e-02 2.204953e-02 #> sehatsigma2hatepsilonylatenthat sehatsigma2hatepsilonmlatenthat #> 2.352171e-02 3.346283e-02