R/betahatinference.R
betahatinference.Rd
Regression Coefficients Hypothesis Test and Confidence Intervals
betahatinference(X, y)
X |
|
---|---|
y | Numeric vector of length |
Returns a matrix with the following columns
Coefficients.
Standard error.
t-statistic.
p-value.
Lower limit 99.99% confidence interval.
Lower limit 99% confidence interval.
Lower limit 95% confidence interval.
Upper limit 95% confidence interval.
Upper limit 99% confidence interval.
Upper limit 99.99% confidence interval.
Other inference functions:
.betahatinference()
,
.slopeshatprimeinference()
,
slopeshatprimeinference()
Ivan Jacob Agaloos Pesigan
# Simple regression------------------------------------------------ X <- jeksterslabRdatarepo::wages.matrix[["X"]] X <- X[, c(1, ncol(X))] y <- jeksterslabRdatarepo::wages.matrix[["y"]] betahatinference(X = X, y = y)#> coef se t p ci_0.05 ci_0.5 #> constant 4.874251 0.72698105 6.704784 3.011026e-11 2.4765930 2.9988909 #> age 0.197486 0.01834111 10.767395 6.019852e-26 0.1369951 0.1501723 #> ci_2.5 ci_97.5 ci_99.5 ci_99.95 #> constant 3.4480531 6.3004490 6.7496112 7.2719091 #> age 0.1615042 0.2334678 0.2447997 0.2579769# Multiple regression---------------------------------------------- X <- jeksterslabRdatarepo::wages.matrix[["X"]] # age is removed X <- X[, -ncol(X)] betahatinference(X = X, y = y)#> coef se t p ci_0.05 ci_0.5 #> constant -7.1833382 1.01578786 -7.071691 2.508276e-12 -10.5335348 -9.8037324 #> gender -3.0748755 0.36461621 -8.433184 8.939416e-17 -4.2774257 -4.0154638 #> race -1.5653133 0.50918754 -3.074139 2.155664e-03 -3.2446781 -2.8788475 #> union 1.0959758 0.50607809 2.165626 3.052356e-02 -0.5731336 -0.2095371 #> education 1.3703010 0.06590421 20.792312 5.507605e-83 1.1529406 1.2002901 #> experience 0.1666065 0.01604756 10.382050 2.659960e-24 0.1136797 0.1252092 #> ci_2.5 ci_97.5 ci_99.5 ci_99.95 #> constant -9.1761258 -5.1905507 -4.5629441 -3.8331417 #> gender -3.7901849 -2.3595660 -2.1342872 -1.8723252 #> race -2.5642449 -0.5663817 -0.2517792 0.1140514 #> union 0.1031443 2.0888072 2.4014886 2.7650852 #> education 1.2410091 1.4995928 1.5403119 1.5876614 #> experience 0.1351242 0.1980889 0.2080039 0.2195334