Analysis of Variance

anovatable(X, y)

Arguments

X

n by k numeric matrix. The data matrix \(\mathbf{X}\) (also known as design matrix, model matrix or regressor matrix) is an \(n \times k\) matrix of \(n\) observations of \(k\) regressors, which includes a regressor whose value is 1 for each observation on the first column.

y

Numeric vector of length n or n by 1 matrix. The vector \(\mathbf{y}\) is an \(n \times 1\) vector of observations on the regressand variable.

Value

Returns the ANOVA table.

See also

Other hypothesis testing functions: .anovatable(), ci(), nhst()

Author

Ivan Jacob Agaloos Pesigan

Examples

# Simple regression------------------------------------------------ X <- jeksterslabRdatarepo::wages.matrix[["X"]] X <- X[, c(1, ncol(X))] y <- jeksterslabRdatarepo::wages.matrix[["y"]] anovatable(X = X, y = y)
#> df SS MS F p #> Model 1 6636.695 6636.69500 115.9368 6.019852e-26 #> Error 1287 73673.129 57.24408 NA NA #> Total 1288 80309.824 NA NA NA
# Multiple regression---------------------------------------------- X <- jeksterslabRdatarepo::wages.matrix[["X"]] # age is removed X <- X[, -ncol(X)] anovatable(X = X, y = y)
#> df SS MS F p #> Model 5 25967.28 5193.45611 122.6149 3.453144e-106 #> Error 1283 54342.54 42.35584 NA NA #> Total 1288 80309.82 NA NA NA