R/ram.R
    Sigmatheta.RdModel-implied variance-covariance matrix \(\boldsymbol{\Sigma} \left( \boldsymbol{\theta} \right)\) from parameters of a \(k\)-variable linear regression model.
Sigmatheta(slopes, sigma2epsilon, SigmaX)
| slopes | Numeric vector of length   | 
    
|---|---|
| sigma2epsilon | Numeric. Variance of the error term \(\varepsilon\) \(\left( \sigma_{\varepsilon}^{2} \right)\).  | 
    
| SigmaX | 
  | 
    
Returns the model-implied variance-covariance matrix
\(\boldsymbol{\Sigma} \left( \boldsymbol{\theta} \right)\).
Note that the first item corresponds to y.
The rest of the items correspond to how SigmaX is arranged.
The following are the parameters of a linear regression model for the covariance structure
\(\boldsymbol{\beta}_{2, \cdots, k}\) is the \(p \times 1\) column vector of regression slopes,
\(\sigma_{\varepsilon}^{2}\) is the variance of the error term \(\varepsilon\), and
\(\boldsymbol{\Sigma}_{\mathbf{X}}\) is the \(p \times p\) matrix of variances and covariances of \({X}_{2}, {X}_{3}, \cdots, {X}_{k}\).
Other model-implied functions: 
mutheta()
Ivan Jacob Agaloos Pesigan
slopes <- c(0.207648, 0.451039) sigma2epsilon <- 0.9310598 SigmaX <- matrix( data = c(1.2934694, 0.4379592, 0.4379592, 1.0779592), ncol = 2 ) Sigmatheta(slopes = slopes, sigma2epsilon = sigma2epsilon, SigmaX = SigmaX)#> [,1] [,2] [,3] #> [1,] 1.2471452 0.4661230 0.4862016 #> [2,] 0.2685863 1.2934694 0.0000000 #> [3,] 0.5771430 0.4379592 1.0779592