Calculates the explained sum of squares \(\left( \mathrm{ESS} \right)\) using $$ \mathrm{ESS} = \sum_{i = 1}^{n} \left( \hat{Y}_{i} - \bar{Y} \right)^2 \\ = \sum_{i = 1}^{n} \left( \hat{\beta}_{1} + \hat{\beta}_{2} X_{2i} + \hat{\beta}_{3} X_{3i} + \dots + \hat{\beta}_{k} X_{ki} - \bar{Y} \right)^2 $$ In matrix form $$ \mathrm{ESS} = \sum_{i = 1}^{n} \left( \mathbf{\hat{y}} - \mathbf{\bar{Y}} \right)^2 \\ = \sum_{i = 1}^{n} \left( \mathbf{X} \boldsymbol{\hat{\beta}} - \mathbf{\bar{Y}} \right)^2 $$ where \(\mathbf{\hat{y}}\) \(\left( \mathbf{X} \boldsymbol{\hat{\beta}} \right)\) is an \(n \times 1\) matrix of predicted values of \(\mathbf{y}\), and \(\mathbf{\bar{Y}}\) is the mean of \(\mathbf{y}\). Equivalent computational matrix formula $$ \mathrm{ESS} = \boldsymbol{\hat{\beta}}^{\prime} \mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\hat{\beta}} - n \mathbf{\bar{Y}}^{2}. $$ Note that $$ \mathrm{TSS} = \mathrm{ESS} + \mathrm{RSS} . $$
ESS(X, y)
X |
|
---|---|
y | Numeric vector of length |
Returns the explained sum of squares \(\left( \mathrm{ESS} \right)\).
Wikipedia: Residual Sum of Squares
Wikipedia: Explained Sum of Squares
Wikipedia: Total Sum of Squares
Wikipedia: Coefficient of Determination
Ivan Jacob Agaloos Pesigan
# Simple regression------------------------------------------------ X <- jeksterslabRdatarepo::wages.matrix[["X"]] X <- X[, c(1, ncol(X))] y <- jeksterslabRdatarepo::wages.matrix[["y"]] ESS(X = X, y = y)#> [1] 6636.695# Multiple regression---------------------------------------------- X <- jeksterslabRdatarepo::wages.matrix[["X"]] # age is removed X <- X[, -ncol(X)] ESS(X = X, y = y)#> [1] 25967.28