vignettes/tests/test-linreg-estimation-betahat_matrix.Rmd
test-linreg-estimation-betahat_matrix.Rmd
# Estimates of Regression Coefficients from summary matrices {#linreg-estimation-betahat_matrix}
See jeksterslabRdatarepo::wages.matrix()
for the data set used in this example.
X <- jeksterslabRdatarepo::wages.matrix[["X"]]
# age is removed
X <- X[, -ncol(X)]
y <- jeksterslabRdatarepo::wages.matrix[["y"]]
head(X)
#> constant gender race union education experience
#> [1,] 1 1 0 0 12 20
#> [2,] 1 0 0 0 9 9
#> [3,] 1 0 0 0 16 15
#> [4,] 1 0 1 1 14 38
#> [5,] 1 1 1 0 16 19
#> [6,] 1 1 0 0 12 4
head(y)
#> wages
#> [1,] 11.55
#> [2,] 5.00
#> [3,] 12.00
#> [4,] 7.00
#> [5,] 21.15
#> [6,] 6.92
data <- X
data[, 1] <- y
Sigmahat <- cov(data)
SigmaXhat <- Sigmahat[-1, -1]
sigmayX <- as.vector(Sigmahat[, 1])
sigmayX <- sigmayX[-1]
result1_slopes <- .slopeshat(
SigmaXhat = SigmaXhat,
sigmayX = sigmayX
)
result2_slopes <- .slopeshat(
X = X,
y = y
)
result3_slopes <- slopeshat(
X = X,
y = y
)
result1_intercept <- .intercepthat(
slopeshat = result1_slopes,
muyhat = mean(y),
muXhat = colMeans(X[, -1])
)
result2_intercept <- .intercepthat(
X = X,
y = y
)
result3_intercept <- .intercepthat(
X = X,
y = y
)
result1_betahat <- c(result1_intercept, as.vector(result1_slopes))
result2_betahat <- c(result2_intercept, as.vector(result2_slopes))
result3_betahat <- c(result3_intercept, as.vector(result3_slopes))
Rhat <- cor(data)
RXhat <- Rhat[-1, -1]
ryXhat <- as.vector(Rhat[, 1])
ryXhat <- ryXhat[-1]
result1_std.slopes <- .slopeshatprime(
X = X,
y = y
)
result2_std.slopes <- .slopeshatprime(
RXhat = RXhat,
ryXhat = ryXhat
)
result3_std.slopes <- slopeshatprime(
X = X,
y = y
)
result1_betahatprime <- c(0, as.vector(result1_std.slopes))
result2_betahatprime <- c(0, as.vector(result2_std.slopes))
result3_betahatprime <- c(0, as.vector(result3_std.slopes))
lm()
functionThe lm()
function is the default option for fitting a linear model in R
.
lmobj <- lm(
wages ~ gender + race + union + education + experience,
data = jeksterslabRdatarepo::wages
)
lmscaledobj <- lm(
wages ~ gender + race + union + education + experience,
data = as.data.frame(scale(jeksterslabRdatarepo::wages))
)
lm_betahat <- coef(lmobj)
lm_betahatprime <- coef(lmscaledobj)
context("Test Coefficients")
test_that("unstandardized.", {
expect_equivalent(
length(lm_betahat),
length(result1_betahat),
length(result2_betahat),
length(result3_betahat)
)
for (i in seq_along(result1_betahat)) {
expect_equivalent(
lm_betahat[i],
result1_betahat[i]
)
expect_equivalent(
lm_betahat[i],
result2_betahat[i]
)
expect_equivalent(
lm_betahat[i],
result3_betahat[i]
)
}
})
#> Test passed 🥳
test_that("standardized.", {
expect_equivalent(
length(lm_betahatprime),
length(result1_betahatprime),
length(result2_betahatprime),
length(result3_betahatprime)
)
for (i in seq_along(result1_betahatprime)) {
expect_equivalent(
lm_betahatprime[i],
result1_betahatprime[i]
)
expect_equivalent(
lm_betahatprime[i],
result2_betahatprime[i]
)
expect_equivalent(
lm_betahatprime[i],
result3_betahatprime[i]
)
}
})
#> Test passed 🎉