vignettes/tests/test-linreg-estimation-MSE.Rmd
test-linreg-estimation-MSE.Rmd
# The Linear Regression Model: Mean Square Error {#linreg-estimation-MSE-example}
See jeksterslabRdatarepo::wages.matrix()
for the data set used in this example.
X <- jeksterslabRdatarepo::wages.matrix[["X"]]
# age is removed
X <- X[, -ncol(X)]
y <- jeksterslabRdatarepo::wages.matrix[["y"]]
head(X)
#> constant gender race union education experience
#> [1,] 1 1 0 0 12 20
#> [2,] 1 0 0 0 9 9
#> [3,] 1 0 0 0 16 15
#> [4,] 1 0 1 1 14 38
#> [5,] 1 1 1 0 16 19
#> [6,] 1 1 0 0 12 4
head(y)
#> wages
#> [1,] 11.55
#> [2,] 5.00
#> [3,] 12.00
#> [4,] 7.00
#> [5,] 21.15
#> [6,] 6.92
lm()
function
lmobj <- lm(
wages ~ gender + race + union + education + experience,
data = jeksterslabRdatarepo::wages
)
lm_MSE <- mean(lmobj$residuals^2)
lm_RMSE <- sqrt(lm_MSE)
result_MSE <- c(
result_MSE1, result_MSE2, result_MSE3
)
result_RMSE <- c(
result_RMSE1, result_RMSE2, result_RMSE3
)
context("Test linreg-estimation-MSE.")
test_that("MSE", {
for (i in seq_along(result_MSE)) {
expect_equivalent(
lm_MSE,
result_MSE[i]
)
}
})
#> Test passed 🎉
test_that("RMSE", {
for (i in seq_along(result_RMSE)) {
expect_equivalent(
lm_RMSE,
result_RMSE[i]
)
}
})
#> Test passed 😀